scholarly journals The kinetics of acylation and deacylation of penicillin acylase from Escherichia coli ATCC 11105: evidence for lowered pKa values of groups near the catalytic centre

1999 ◽  
Vol 338 (1) ◽  
pp. 235-239 ◽  
Author(s):  
Manuel MORILLAS ◽  
Martin L. GOBLE ◽  
Richard VIRDEN

Penicillin G acylase catalysed the hydrolysis of 4-nitrophenyl acetate with a kcat of 0.8 s-1 and a Km of 10 µM at pH 7.5 and 20 °C. Results from stopped-flow experiments fitted a dissociation constant of 0.16 mM for the Michaelis complex, formation of an acetyl enzyme with a rate constant of 32 s-1 and a subsequent deacylation step with a rate constant of 0.81 s-1. Non-linear Van't Hoff and Arrhenius plots for these parameters, measured at pH 7.5, may be partly explained by a conformational transition affecting catalytic groups, but a linear Arrhenius plot for the ratio of the rate constant for acylation relative to KS was consistent with energy-compensation between the binding of the substrate and catalysis of the formation of the transition state. At 20 °C, the pH-dependence of kcat was similar to that of kcat/Km, indicating that formation of the acyl-enzyme did not affect the pKa values (6.5 and 9.0) of an acidic and basic group in the active enzyme. The heats of ionization deduced from values of pKa for kcat, which measures the rate of deacylation, are consistent with α-amino and guanidinium groups whose pKa values are decreased in a non-polar environment. It is proposed that, for catalytic activity, the α-amino group of the catalytic SerB1 and the guanidinium group of ArgB263 are required in neutral and protonated states respectively.

1993 ◽  
Vol 291 (3) ◽  
pp. 907-914 ◽  
Author(s):  
J Martín ◽  
J M Mancheño ◽  
R Arche

Penicillin acylase (PA) from Kluyvera citrophila was inhibited by N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline (EEDQ), a specific carboxy-group-reactive reagent. Enzyme activity progressively decreased to a residual value depending on EEDQ concentration. Neither enzymic nor non-enzymic decomposition of EEDQ is concomitant with PA inactivation. Moreover, enzyme re-activation is achieved by chromatographic removal of EEDQ, pH increase or displacement of the reagent with penicillin G. It was then concluded that PA inactivation is due to an equilibrium reaction. The kinetics of enzyme inactivation was analysed by fitting data to theoretical equations derived in accordance with this mechanism. Corrections for re-activation during the enzyme assay were a necessary introduction. The pH-dependence of the rate constant for EEDQ hydrolysis either alone or in the presence of enzyme was studied by u.v. spectroscopy. It turned out to be coincident with the pH-dependence of the forward and reverse rate constants for the inactivation process. It is suggested that previous protonation of the EEDQ molecule is required for these reactions to occur. The thermodynamic values associated with the overall reaction showed little change. Finally it is proposed that the inactivation of PA by EEDQ proceeds through a two-step reaction. The initial and rapid reversible binding is followed by a slow, time-dependent, non-covalent, reversible inactivating step. The expected behaviour in the case of enzyme modification by covalent activation of carboxy residues is also reviewed.


1992 ◽  
Vol 45 (12) ◽  
pp. 1943 ◽  
Author(s):  
SJ Dunne ◽  
RC Burns ◽  
GA Lawrance

Oxidation of Ni2+,aq, by S2O82- to nickel(IV) in the presence of molybdate ion, as in the analogous manganese system, involves the formation of the soluble heteropolymolybdate anion [MMogO32]2- (M = Ni, Mn ). The nickel(IV) product crystallized as (NH4)6 [NiMogO32].6H2O from the reaction mixture in the rhombohedra1 space group R3, a 15.922(1), c 12.406(1) � ; the structure was determined by X-ray diffraction methods, and refined to a residual of 0.025 for 1741 independent 'observed' reflections. The kinetics of the oxidation were examined at 80 C over the pH range 3.0-5.2; a linear dependence on [S2O82-] and a non-linear dependence on l/[H+] were observed. The influence of variation of the Ni/Mo ratio between 1:10 and 1:25 on the observed rate constant was very small at pH 4.5, a result supporting the view that the precursor exists as the known [NiMo6O24H6]4- or a close analogue in solution. The pH dependence of the observed rate constant at a fixed oxidant concentration (0.025 mol dm-3) fits dequately to the expression kobs = kH [H+]/(Ka+[H+]) where kH = 0.0013 dm3 mol-1 s-1 and Ka = 4-0x10-5. The first-order dependence on peroxodisulfate subsequently yields a second-order rate constant of 0.042 dm3 mol-1 s-1. Under analogous conditions, oxidation of manganese(II) occurs eightfold more slowly than oxidation of nickel(II), whereas oxidation of manganese(II) by peroxomonosulfuric acid is 16-fold faster than oxidation by peroxodisulfate under similar conditions.


1993 ◽  
Vol 290 (1) ◽  
pp. 15-19 ◽  
Author(s):  
A Lewendon ◽  
W V Shaw

A catalytically essential histidine residue (His-195) of chloramphenicol acetyltransferase (CAT) acts as a general base in catalysis, abstracting a proton from the primary hydroxy group of chloramphenicol. The pKa of His-195 has been determined from the pH-dependence of chemical modification. Both methyl 4-nitrobenzenesulphonate and iodoacetamide inactivate CAT by irreversible modification of His-195. The kinetics of inactivation by methyl 4-nitrobenzenesulphonate are pseudo-first-order, and the pH-dependence of inactivation yields a pKa value of 6.60. Iodoacetamide inactivation proceeds with second-order kinetics and a pKa value of 6.80. An alternative site of modification at the active site of CAT is the thiol group of Cys-31, a residue which has no catalytic role. On replacement of Cys-31 with alanine (Ala-31 CAT), the pH-dependence of iodoacetamide inactivation gives a pKa value of 6.66. The pKa values derived from chemical-modification experiments directed at His-195 are in agreement with the pKa values of 6.62 and 6.61 determined for wild-type and Ala-31 CAT respectively from the pH-dependence of kcat/Km.


1987 ◽  
Vol 62 (3) ◽  
pp. 1216-1221 ◽  
Author(s):  
D. A. Rickaby ◽  
R. D. Bongard ◽  
M. J. Tristani ◽  
J. H. Linehan ◽  
C. A. Dawson

Given the pH dependence of enzymes in general and the potential importance of a blood and alveolar gas composition dependency on the interpretation of changes in the hydrolysis of angiotensin-converting enzyme (ACE) substrates by pulmonary endothelial ACE, we examined the influence of Pco2 and Po2 on the hydrolysis of a synthetic ACE substrate (benzoyl-phenylalanyl-alanyl-proline, BPAP) on passage through isolated rabbit lungs. Perfusate pH values of about 7.1, 7.4, and 7.9 were obtained by ventilating the lungs with gas containing different CO2 concentrations and Po2 values of approximately 110 and approximately 10 Torr were obtained by varying the concentration of O2 in the ventilating gas mixture. In the range studied neither acidosis nor alkalosis produced any significant changes in BPAP hydrolysis or in the kinetic parameters, Vmax and Km, for the hydrolysis process. On the other hand, a reduction in BPAP hydrolysis was detected when the Po2 was reduced from 110 to 10 Torr. The Vmax for BPAP hydrolysis by the lung was inversely correlated with the magnitude of the hypoxic vasoconstriction that occurred, suggesting that the reduced BPAP hydrolysis with hypoxia was due to the loss of perfused surface area due to the vasoconstriction. The results suggest that correlations between Pco2 and/or pH and whole-lung ACE activity that might occur in diseased lungs do not imply causalty. The hemodynamic consequences of changing Po2 (i.e., hypoxic vasoconstriction) may alter whole-organ ACE activity in the sense of changing the perfused surface area (i.e., the amount of ACE in contact with flowing perfusate).


2006 ◽  
Vol 281 (43) ◽  
pp. 32922-32928 ◽  
Author(s):  
Agustin O. Pineda ◽  
Zhi-Wei Chen ◽  
Alaji Bah ◽  
Laura C. Garvey ◽  
F. Scott Mathews ◽  
...  

The activating effect of Na+ on thrombin is allosteric and depends on the conformational transition from a low activity Na+-free (slow) form to a high activity Na+-bound (fast) form. The structures of these active forms have been solved. Recent structures of thrombin obtained in the absence of Na+ have also documented inactive conformations that presumably exist in equilibrium with the active slow form. The validity of these inactive slow form structures, however, is called into question by the presence of packing interactions involving the Na+ site and the active site regions. Here, we report a 1.87Å resolution structure of thrombin in the absence of inhibitors and salts with a single molecule in the asymmetric unit and devoid of significant packing interactions in regions involved in the allosteric slow → fast transition. The structure shows an unprecedented self-inhibited conformation where Trp-215 and Arg-221a relocate >10Å to occlude the active site and the primary specificity pocket, and the guanidinium group of Arg-187 penetrates the protein core to fill the empty Na+-binding site. The extreme mobility of Trp-215 was investigated further with the W215P mutation. Remarkably, the mutation significantly compromises cleavage of the anticoagulant protein C but has no effect on the hydrolysis of fibrinogen and PAR1. These findings demonstrate that thrombin may assume an inactive conformation in the absence of Na+ and that its procoagulant and anticoagulant activities are closely linked to the mobility of residue 215.


1985 ◽  
Vol 226 (2) ◽  
pp. 601-606 ◽  
Author(s):  
N E Mackenzie ◽  
J P G Malthouse ◽  
A I Scott

The chemical synthesis of N-alpha-benzyloxycarbonyl-L-lysine p-nitroanilide (Z-Lys-pNA) is described in detail. The pH-dependence of the catalytic parameters kcat,' Km and kcat./Km for the papain-catalysed hydrolysis of Z-Lys-pNA are determined. kcat. and Km are pH-independent between pH 5 and pH 7.42, but the pH-dependence of kcat./Km is bell-shaped, decreasing at high and low pH values with pKa values of 7.97 and 4.40 respectively. The catalytic parameters and their pH-dependence are shown to be similar to those reported for other anilide substrates and it is concluded that the Km value of 0.01 mM previously reported [Angelides & Fink (1979) Biochemistry 18, 2355-2369] is incorrect. The possibility of accumulating a tetrahedral intermediate during the papain-catalysed hydrolysis of Z-Lys-pNA is discussed.


2001 ◽  
Vol 357 (1) ◽  
pp. 195-202
Author(s):  
Mireia ABEL ◽  
Antoni PLANAS ◽  
Ulla CHRISTENSEN

In the present study the first stopped-flow experiments performed on Bacillus 1,3–1,4-β-glucanases are reported. The presteady-state kinetics of the binding of 4-methylumbelliferyl 3-O-β-cellobiosyl-β-d-glucoside to the inactive mutant E134A, and the wild-type-catalysed hydrolysis of the same substrate, were studied by measuring changes in the fluorescence of bound substrate or 4-methylumbelliferone produced. The presteady-state traces all showed an initial lag phase followed by a fast monoexponential phase leading to equilibration (for binding to E134A) or to steady state product formation (for the wild-type reaction). The lag phase, with a rate constant of the order of 100s−1, was independent of the substrate concentration; apparently an induced-fit mechanism governs the formation of enzyme–substrate complexes. The concentration dependencies of the observed rate constant of the second presteady-state phase were analysed according to a number of reaction models. For the reaction of the wild-type enzyme, it is shown that the fast product formation observed before steady state is not due to a rate-determining deglycosylation step. A model that can explain the observed results involves, in addition to the induced fit, a conformational change of the productive ES complex into a form that binds a second substrate molecule in a non-productive mode.


1971 ◽  
Vol 49 (18) ◽  
pp. 3059-3063 ◽  
Author(s):  
R. Roman ◽  
H. B. Dunford ◽  
M. Evett

The kinetics of the oxidation of iodide ion by horseradish peroxidase compound II have been studied as a function of pH at 25° and ionic strength of 0.11. The logarithm of the second-order rate constant decreases linearly from 2.3 × 105 to 0.1 M−1 s−1 with increasing pH over the pH range 2.7 to 9.0. The pH dependence of the reaction is explained in terms of an acid dissociation outside the pH range of the study.


2004 ◽  
Vol 08 (11) ◽  
pp. 1269-1275 ◽  
Author(s):  
Ahsan Habib ◽  
Masaaki Tabata ◽  
Ying Guang Wu

The kinetics of the reaction of the tetrakis(1-methylpyridium-4-yl)porphyrin tetracation, [ H 2( TMPyP )]4+, with gold(III) ions were studied along with equilibria of gold(III) species in aqueous medium at 25°C, I = 0.10 M ( NaNO 3). The equilibrium constants for the formation of [ AuCl 4-n( OH ) n ]- ( n = 0,…,4), defined as β n = [ AuCl 4- n ( OH ) n ]- [ Cl -] n / [ AuCl 4-][ OH -] n were found to be that log β1 = 7.94 ± 0.03, log β2 = 15.14 ± 0.03, log β3 = 21.30 ± 0.05 and log β4 = 26.88 ± 0.05. The overall reaction was first order with respect to each of the total [ Au (III)] and [ H 2 TMPyP 4+]. On the basis of pH dependence on rate constants and the hydrolysis of gold(III), the rate expression can be written as d [ Au ( TMPyP )5+]/ dt = ( k 1[ AuCl 4-] + k2[ AuCl 3( OH )-] + k3[ AuCl 2( OH )2-] + k4[ AuCl ( OH )3-])[ H 2 TMPyP 4+], where k1, k2, k3 and k4 were found to be (2.16 ± 0.31) × 10-1, (6.56 ± 0.19) × 10-1, (1.07 ± 0.24) × 10-1, and (0.29 ± 0.21) × 10-1 M -1. s -1, respectively. The kinetic data revealed that the trichloromonohydroxogold(III) species, [ AuCl 3( OH )]-, is the most reactive. The higher reactivity of [ AuCl 3( OH )]- is explained by hydrogen bonding formation between the hydroxyl group of [ AuCl 3( OH )]- and the pyrrole hydrogen atom of [ H 2( TMPyP )]4+. Furthermore, applying the Fuoss equation to the observed rate constants at different ionic strengths, the apparent net charge of [ H 2( TMPyP )]4+ was calculated to be +3.5.


Sign in / Sign up

Export Citation Format

Share Document