scholarly journals Stimulation of Drosophila TrpL by capacitative Ca2+ entry

1999 ◽  
Vol 341 (1) ◽  
pp. 41-49 ◽  
Author(s):  
Mark ESTACION ◽  
William G. SINKINS ◽  
William P. SCHILLING

Trp-like protein (TrpL, where Trp is transient receptor-potential protein) of Drosophila, a non-selective cation channel activated in photoreceptor cells by a phospholipase C-dependent mechanism, is thought to be a prototypical receptor-activated channel. Our previous studies showed that TrpL channels are not activated by depletion of internal Ca2+ stores when expressed in Sf9 cells. Using fura-2 to measure cation influx via TrpL, and cell-attached patch recordings to monitor TrpL single-channel activity directly, we have found a thapsigargin-induced increase in TrpL activity in the presence of extracellular bivalent cations, with Ca2+ > Sr2+ Ba2+. The increase in TrpL channel activity was blocked by concentrations of La3+ that completely inhibited endogenous capacitative Ca2+ entry (CCE), but have no effect on TrpL, suggesting that TrpL exhibits trans-stimulation by cation entry via CCE. TrpL has two putative calmodulin (CaM)-binding domains, designated CBS-1 and CBS-2. To determine which site may be required for stimulation of TrpL by the cytosolic free Ca2+ concentration ([Ca2+]i), a chimaeric construct was created in which the C-terminal domain of TrpL containing CBS-2 was attached to human TrpC1, a short homologue of Trp that is not activated by depletion of internal Ca2+ stores or by a rise in [Ca2+]i. This gain-of-function mutant, designated TrpC1-TrpL, exhibited trans-stimulation by Ca2+ entry via CCE. Examination of CaM binding in gel-overlay experiments showed that TrpL and the TrpC1-TrpL chimaera bound CaM, but TrpC1 or a truncated version of TrpL lacking CBS-2 did not. These results suggest that only CBS-2 binds CaM in native TrpL and that the C-terminal domain containing this site is important for trans-stimulation of TrpL by CCE.

2007 ◽  
Vol 282 (46) ◽  
pp. 33868-33878 ◽  
Author(s):  
Marcus Semtner ◽  
Michael Schaefer ◽  
Olaf Pinkenburg ◽  
Tim D. Plant

Mammalian members of the classical transient receptor potential channel subfamily (TRPC) are Ca2+-permeable cation channels involved in receptor-mediated increases in intracellular Ca2+. TRPC4 and TRPC5 form a group within the TRPC subfamily and are activated in a phospholipase C-dependent manner by an unidentified messenger. Unlike most other Ca2+-permeable channels, TRPC4 and -5 are potentiated by micromolar concentrations of La3+ and Gd3+. This effect results from an action of the cations at two glutamate residues accessible from the extracellular solution. Here, we show that TRPC4 and -5 respond to changes in extracellular pH. Lowering the pH increased both G protein-activated and spontaneous TRPC5 currents. Both effects were already observed with small reductions in pH (from 7.4 to 7.0) and increased up to pH 6.5. TRPC4 was also potentiated by decreases in pH, whereas TRPC6 was only inhibited, with a pIC50 of 5.7. Mutation of the glutamate residues responsible for lanthanoid sensitivity of TRPC5 (E543Q and E595Q) modified the potentiation of TRPC5 by acid. Further evidence for a similarity in the actions of lanthanoids and H+ on TRPC5 is the reduction in single channel conductance and dramatic increase in channel open probability in the presence of either H+ or Gd3+ that leads to larger integral currents. In conclusion, the high sensitivity of TRPC5 to H+ indicates that, in addition to regulation by phospholipase C and other factors, the channel may act as a sensor of pH that links decreases in extracellular pH to Ca2+ entry and depolarization.


2011 ◽  
Vol 26 (5) ◽  
pp. 2376-2382 ◽  
Author(s):  
Oliver Pänke ◽  
Winnie Weigel ◽  
Sabine Schmidt ◽  
Anja Steude ◽  
Andrea A. Robitzki

2009 ◽  
Vol 101 (3) ◽  
pp. 1151-1159 ◽  
Author(s):  
A. Pezier ◽  
Y. V. Bobkov ◽  
B. W. Ache

The mechanism(s) of olfactory transduction in invertebrates remains to be fully understood. In lobster olfactory receptor neurons (ORNs), a nonselective sodium-gated cation (SGC) channel, a presumptive transient receptor potential (TRP)C channel homolog, plays a crucial role in olfactory transduction, at least in part by amplifying the primary transduction current. To better determine the functional role of the channel, it is important to selectively block the channel independently of other elements of the transduction cascade, causing us to search for specific pharmacological blockers of the SGC channel. Given evidence that the Na+/Ca2+ exchange inhibitor, KB-R7943, blocks mammalian TRPC channels, we studied this probe as a potential blocker of the lobster SGC channel. KB-R7943 reversibly blocked the SGC current in both inside- and outside-out patch recordings in a dose- and voltage-dependent manner. KB-R7943 decreased the channel open probability without changing single channel amplitude. KB-R7943 also reversibly and in a dose-dependent manner inhibited both the odorant-evoked discharge of lobster ORNs and the odorant-evoked whole cell current. Our findings strongly imply that KB-R7943 potently blocks the lobster SGC channel and likely does so directly and not through its ability to block the Na+/Ca2+ exchanger.


2000 ◽  
Vol 150 (6) ◽  
pp. 1411-1422 ◽  
Author(s):  
Hong-Sheng Li ◽  
Craig Montell

The light response in Drosophila photoreceptor cells is mediated by a series of proteins that assemble into a macromolecular complex referred to as the signalplex. The central player in the signalplex is inactivation no afterpotential D (INAD), a protein consisting of a tandem array of five PDZ domains. At least seven proteins bind INAD, including the transient receptor potential (TRP) channel, which depends on INAD for localization to the phototransducing organelle, the rhabdomere. However, the determinants required for localization of INAD are not known. In this work, we showed that INAD was required for retention rather than targeting of TRP to the rhabdomeres. In addition, we demonstrated that TRP bound to INAD through the COOH terminus, and this interaction was required for localization of INAD. Other proteins that depend on INAD for localization, phospholipase C and protein kinase C, also mislocalized. However, elimination of any other member of the signalplex had no impact on the spatial distribution of INAD. A direct interaction between TRP and INAD did not appear to have a role in the photoresponse independent of localization of multiple signaling components. Rather, the primary function of the TRP/ INAD complex is to form the core unit required for localization of the signalplex to the rhabdomeres.


2012 ◽  
Vol 303 (3) ◽  
pp. C308-C317 ◽  
Author(s):  
Jaladanki N. Rao ◽  
Navneeta Rathor ◽  
Ran Zhuang ◽  
Tongtong Zou ◽  
Lan Liu ◽  
...  

Early epithelial restitution occurs as a consequence of intestinal epithelial cell (IEC) migration after wounding, and its defective regulation is implicated in various critical pathological conditions. Polyamines stimulate intestinal epithelial restitution, but their exact mechanism remains unclear. Canonical transient receptor potential-1 (TRPC1)-mediated Ca2+ signaling is crucial for stimulation of IEC migration after wounding, and induced translocation of stromal interaction molecule 1 (STIM1) to the plasma membrane activates TRPC1-mediated Ca2+ influx and thus enhanced restitution. Here, we show that polyamines regulate intestinal epithelial restitution through TRPC1-mediated Ca2+ signaling by altering the ratio of STIM1 to STIM2. Increasing cellular polyamines by ectopic overexpression of the ornithine decarboxylase (ODC) gene stimulated STIM1 but inhibited STIM2 expression, whereas depletion of cellular polyamines by inhibiting ODC activity decreased STIM1 but increased STIM2 levels. Induced STIM1/TRPC1 association by increasing polyamines enhanced Ca2+ influx and stimulated epithelial restitution, while decreased formation of the STIM1/TRPC1 complex by polyamine depletion decreased Ca2+ influx and repressed cell migration. Induced STIM1/STIM2 heteromers by polyamine depletion or STIM2 overexpression suppressed STIM1 membrane translocation and inhibited Ca2+ influx and epithelial restitution. These results indicate that polyamines differentially modulate cellular STIM1 and STIM2 levels in IECs, in turn controlling TRPC1-mediated Ca2+ signaling and influencing cell migration after wounding.


2018 ◽  
Vol 315 (6) ◽  
pp. C793-C802 ◽  
Author(s):  
Mohammad Shahidullah ◽  
Amritlal Mandal ◽  
Nicholas A. Delamere

Lens ion homeostasis is crucial in maintaining water content and, in turn, refractive index and transparency of the multicellular syncytium-like structure. New information is emerging on the regulation of ion transport in the lens by mechanisms that rely on transient receptor potential vanilloid (TRPV) ion channels. We found recently that TRPV1 activation leads to Ca2+/PKC-dependent ERK1/2 signaling. Here, we show that the TRPV1 agonist capsaicin (100 nM) and hyperosmotic solution (350 vs. 300 mosM) each caused an increase of bumetanide-inhibitable Rb uptake by intact porcine lenses and Na-K-2Cl cotransporter 1 (NKCC1) phosphorylation in the lens epithelium. The TRPV1 antagonist A889425 (1 µM) abolished the increases of Rb uptake and NKCC1 phosphorylation in response to hyperosmotic solution. Exposing lenses to hyperosmotic solution in the presence of MEK/ERK inhibitor U0126 (10 µM) or the with-no-lysine kinase (WNK) inhibitor WNK463 (1 µM) also prevented NKCC1 phosphorylation and the Rb uptake responses to hyperosmotic solution. WNK463 did not prevent the increase in ERK1/2 phosphorylation that occurs in response to capsaicin or hyperosmotic solution, suggesting that ERK1/2 activation occurs before WNK activation in the sequence of signaling events. Taken together, the evidence indicates that activation of TRPV1 is a critical early step in a signaling mechanism that responds to a hyperosmotic stimulus, possibly lens shrinkage. By activating ERK1/2 and WNK, TRPV1 activation leads to NKCC1 phosphorylation and stimulation of NKCC1-mediated ion transport.


2009 ◽  
Vol 297 (2) ◽  
pp. C360-C368 ◽  
Author(s):  
Elie Abed ◽  
Robert Moreau

Bone is a dynamic tissue that is continuously being remodeled throughout life. Specialized cells called osteoclasts transiently break down old bone (resorption process) at multiple sites as other cells known as osteoblasts are replacing it with new tissue (bone formation). Usually, both resorption and formation processes are in balance and thereby maintain skeletal strength and integrity. This equilibrium is assured by the coordination of proliferation, migration, differentiation, and secretory functions of the osteoblasts, which are essential for adequate formation and resorption processes. Disturbances of this equilibrium may lead to decreased bone mass (osteoporosis), increased bone fragility, and susceptibility to fractures. Epidemiological studies have linked insufficient dietary magnesium (Mg2+) intake in humans with low bone mass and osteoporosis. Here, we investigated the roles of Mg2+ and melastatin-like transient receptor potential 7 (TRPM7), known as Mg2+ channels, in human osteoblast cell proliferation and migration induced by platelet-derived growth factor (PDGF), which has been involved in the bone remodeling process. PDGF promoted an influx of Mg2+, enhanced cell migration, and stimulated the gene expression of TRPM7 channels in human osteoblast MG-63 cells. The stimulation of osteoblast proliferation and migration by PDGF was significantly reduced under culture conditions of low extracellular Mg2+ concentrations. Silencing TRPM7 expression in osteoblasts by specific small interfering RNA prevented the induction by PDGF of Mg2+ influx, proliferation, and migration. Our results indicate that extracellular Mg2+ and TRPM7 are important for PDGF-induced proliferation and migration of human osteoblasts. Thus Mg2+ deficiency, a common condition among the general population, may be associated with altered osteoblast functions leading to inadequate bone formation and the development of osteoporosis.


Sign in / Sign up

Export Citation Format

Share Document