scholarly journals Model of 2,3-bisphosphoglycerate metabolism in the human erythrocyte based on detailed enzyme kinetic equations1: in vivo kinetic characterization of 2,3-bisphosphoglycerate synthase/phosphatase using 13C and 31P NMR

1999 ◽  
Vol 342 (3) ◽  
pp. 567-580 ◽  
Author(s):  
Peter J. MULQUINEY ◽  
William A. BUBB ◽  
Philip W. KUCHEL

This is the first in a series of three papers [see also Mulquiney and Kuchel (1999) Biochem. J. 342, 579-594; Mulquiney and Kuchel (1999) Biochem. J. 342, 595-602] that present a detailed mathematical model of erythrocyte metabolism which explains the regulation and control of 2,3-bisphosphoglycerate (2,3-BPG) metabolism. 2,3-BPG is a modulator of haemoglobin oxygen affinity and hence plays an important role in blood oxygen transport and delivery. This paper presents an in vivo kinetic characterization of 2,3-BPG synthase/phosphatase (BPGS/P), the enzyme that catalyses both the synthesis and degradation of 2,3-BPG. Much previous work had indicated that the behaviour of this enzyme in vitro is markedly different from that in vivo. 13C and 31P NMR were used to monitor the time courses of selected metabolites when erythrocytes were incubated with or without [U-13C]glucose. Simulations of the experimental time courses were then made. By iteratively changing the parameters of the BPGS/P part of the model until a good match between the NMR-derived data and simulations were achieved, it was possible to characterize BPGS/P kineticallyin vivo. This work revealed that: (1) the pH-dependence of the synthase activity results largely from a strong co-operative inhibition of the synthase activity by protons; (2) 3-phosphoglycerate and 2-phosphoglycerate are much weaker inhibitors of 2,3-BPG phosphatase in vivo than in vitro; (3) the Km of BPGS/P for 2,3-BPG is significantly higher than that measured in vitro; (4) the maximal activity of the phosphatase in vivo is approximately twice that in vitro, when Pi is the sole activator (second substrate); and (5) 2-phosphoglycollate appears to play no role in the activation of the phosphatase in vivo. Using the newly determined kinetic parameters, the percentage of glycolytic carbon flux that passes through the 2,3-BPG shunt in the normal in vivo steady state was estimated to be 19%.

Marine Drugs ◽  
2020 ◽  
Vol 18 (2) ◽  
pp. 126
Author(s):  
Chunrui Ma ◽  
Xiao Li ◽  
Kun Yang ◽  
Shangyong Li

Chitooligosaccharide (COS) has been recognized to exhibit efficient anti-oxidant activity. Enzymatic hydrolysis using chitosanases can retain all the amino and hydroxyl groups of chitosan, which are necessary for its activity. In this study, a new chitosanase encoding gene, csnQ, was cloned from the marine Bacillus sp. Q1098 and expressed in Escherichia coli. The recombinant chitosanase, CsnQ, showed maximal activity at pH 5.31 and 60 °C. Determination of CsnQ pH-stability showed that CsnQ could retain more than 50% of its activity over a wide pH, from 3.60 to 9.80. CsnQ is an endo-type chitosanase, yielding chitodisaccharide as the main product. Additionally, in vitro and in vivo analyses indicated that chitodisaccharide possesses much more effective anti-oxidant activity than glucosamine and low molecular weight chitosan (LMW-CS) (~5 kDa). Notably, to our knowledge, this is the first evidence that chitodisaccharide is the minimal COS fragment required for free radical scavenging.


1998 ◽  
Vol 72 (10) ◽  
pp. 609-621 ◽  
Author(s):  
Patrick D. Lilly ◽  
Janice R. Thornton-Manning ◽  
Michael L. Gargas ◽  
Harvey J. Clewell ◽  
Melvin E. Andersen ◽  
...  

Cells ◽  
2019 ◽  
Vol 8 (5) ◽  
pp. 474 ◽  
Author(s):  
Lu Zhao ◽  
Yang Zhao ◽  
Fu-Lei Tang ◽  
Lei Xiong ◽  
Ce Su ◽  
...  

β-site APP-cleaving enzyme 1 (BACE1) initiates amyloid precursor protein (APP) cleavage and β-amyloid (Aβ) production, a critical step in the pathogenesis of Alzheimer’s disease (AD). It is thus of considerable interest to investigate how BACE1 activity is regulated. BACE1 has its maximal activity at acidic pH and GFP variant—pHluorin—displays pH dependence. In light of these observations, we generated three tandem fluorescence-tagged BACE1 fusion proteins, named pHluorin-BACE1-mCherry, BACE1-mCherry-pHluorin and BACE1-mCherry-EGFP. Comparing the fluorescence characteristics of these proteins in response to intracellular pH changes induced by chloroquine or bafilomycin A1, we found that pHluorin-BACE1-mCherry is a better pH sensor for BACE1 because its fluorescence intensity responds to pH changes more dramatically and more quickly. Additionally, we found that (pro)renin receptor (PRR), a subunit of the v-ATPase complex, which is critical for maintaining vesicular pH, regulates pHluorin’s fluorescence and BACE1 activity in pHluorin-BACE1-mCherry expressing cells. Finally, we found that the expression of Swedish mutant APP (APPswe) suppresses pHluorin fluorescence in pHluorin-BACE1-mCherry expressing cells in culture and in vivo, implicating APPswe not only as a substrate but also as an activator of BACE1. Taken together, these results suggest that the pHluorin-BACE1-mCherry fusion protein may serve as a useful tool for visualizing active/inactive BACE1 in culture and in vivo.


1993 ◽  
Vol 2 (1) ◽  
pp. 7-18 ◽  
Author(s):  
S. Singer ◽  
P. Okunieff ◽  
C. Gostin ◽  
W.G. Thilly ◽  
L.B. Chen ◽  
...  

2019 ◽  
Author(s):  
Priya Prakash ◽  
Travis Lantz ◽  
Krupal P. Jethava ◽  
Gaurav Chopra

Amyloid plaques found in the brains of Alzheimer’s disease (AD) patients primarily consists of amyloid beta 1-42 (Ab42). Commercially, Ab42 is synthetized using peptide synthesizers. We describe a robust methodology for expression of recombinant human Ab(M1-42) in Rosetta(DE3)pLysS and BL21(DE3)pLysS competent E. coli with refined and rapid analytical purification techniques. The peptide is isolated and purified from the transformed cells using an optimized set-up for reverse-phase HPLC protocol, using commonly available C18 columns, yielding high amounts of peptide (~15-20 mg per 1 L culture) in a short time. The recombinant Ab(M1-42) forms characteristic aggregates similar to synthetic Ab42 aggregates as verified by western blots and atomic force microscopy to warrant future biological use. Our rapid, refined, and robust technique to purify human Ab(M1-42) can be used to synthesize chemical probes for several downstream in vitro and in vivo assays to facilitate AD research.


Carbon ◽  
2016 ◽  
Vol 103 ◽  
pp. 291-298 ◽  
Author(s):  
Valeria Ettorre ◽  
Patrizia De Marco ◽  
Susi Zara ◽  
Vittoria Perrotti ◽  
Antonio Scarano ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document