scholarly journals Comparison of the kinetic properties of the lipid- and protein-kinase activities of the p110α and p110β catalytic subunits of class-Ia phosphoinositide 3-kinases

2000 ◽  
Vol 350 (2) ◽  
pp. 353-359 ◽  
Author(s):  
Carolyn A. BEETON ◽  
Edwin M. CHANCE ◽  
Lazaros C. FOUKAS ◽  
Peter R. SHEPHERD

Growth factors regulate a wide range of cellular processes via activation of the class-Ia phosphoinositide 3-kinases (PI 3-kinases). We directly compared kinetic properties of lipid- and protein-kinase activities of the widely expressed p110α and p110β isoforms. The lipid-kinase activity did not display Michaelis–Menten kinetics but modelling the kinetic data demonstrated that p110α has a higher Vmax and a 25-fold higher Km for PtdIns than p110β. A similar situation occurs with PtdIns(4,5)P2, because at low concentration of PtdIns(4,5)P2 p110β is a better PtdIns(4,5)P2 kinase than p110α, although this is reversed at high concentrations. These differences suggest different functional roles and we hypothesize that p110β functions better in areas of membranes containing low levels of substrate whereas p110α would work best in areas of high substrate density such as membrane lipid rafts. We also compared protein-kinase activities. We found that p110β phosphorylated p85 to a lower degree than did p110α. We used a novel peptide-based assay to compare the kinetics of the protein-kinase activities of p110α and p110β. These studies revealed that, like the lipid-kinase activity, the protein-kinase activity of p110α has a higher Km (550µM) than p110β (Km 8µM). Similarly, the relative Vmax towards peptide substrate of p110α was three times higher than that of p110β. This implies differences in the rates of regulatory autophosphorylation in vivo, which are likely to mean differential regulation of the lipid-kinase activities of p110α and p110β in vivo.

2013 ◽  
Vol 33 (6) ◽  
Author(s):  
James M. J. Dickson ◽  
Woo-Jeong Lee ◽  
Peter R. Shepherd ◽  
Christina M. Buchanan

NTT (N-terminal tags) on the catalytic (p110) sub-unit of PI 3-K (phosphoinositol 3-kinase) have previously been shown to increase cell signalling and oncogenic transformation. Here we test the impact of an NT (N-terminal) His-tag on in vitro lipid and protein kinase activity of all class-1 PI 3-K isoforms and two representative oncogenic mutant forms (E545K and H1047R), in order to elucidate the mechanisms behind this elevated signalling and transformation observed in vivo. Our results show that an NT His-tag has no impact on lipid kinase activity as measured by enzyme titration, kinetics and inhibitor susceptibility. Conversely, the NT His-tag did result in a differential effect on protein kinase activity, further potentiating the elevated protein kinase activity of both the helical domain and catalytic domain oncogenic mutants with relation to p110 phosphorylation. All other isoforms also showed elevated p110 phosphorylation (although not statistically significant). We conclude that the previously reported increase in cell signalling and oncogenic-like transformation in response to p110 NTT is not mediated via an increase in the lipid kinase activity of PI 3-K, but may be mediated by increased p110 autophosphorylation and/or other, as yet unidentified, intracellular protein/protein interactions. We further observe that tagged recombinant protein is suitable for use in in vitro lipid kinase screens to identify PI 3-K inhibitors; however, we recommend that in vivo (including intracellular) experiments and investigations into the protein kinase activity of PI 3-K should be conducted with untagged constructs.


2000 ◽  
Vol 20 (16) ◽  
pp. 5858-5864 ◽  
Author(s):  
Gregory J. Reynard ◽  
William Reynolds ◽  
Rati Verma ◽  
Raymond J. Deshaies

ABSTRACT p13suc1 (Cks) proteins have been implicated in the regulation of cyclin-dependent kinase (CDK) activity. However, the mechanism by which Cks influences the function of cyclin-CDK complexes has remained elusive. We show here that Cks1 is required for the protein kinase activity of budding yeast G1 cyclin-CDK complexes. Cln2 and Cdc28 subunits coexpressed in baculovirus-infected insect cells fail to exhibit protein kinase activity towards multiple substrates in the absence of Cks1. Cks1 can both stabilize Cln2-Cdc28 complexes and activate intact complexes in vitro, suggesting that it plays multiple roles in the biogenesis of active G1cyclin-CDK complexes. In contrast, Cdc28 forms stable, active complexes with the B-type cyclins Clb4 and Clb5 regardless of whether Cks1 is present. The levels of Cln2-Cdc28 and Cln3-Cdc28 protein kinase activity are severely reduced in cks1-38 cell extracts. Moreover, phosphorylation of G1 cyclins, which depends on Cdc28 activity, is reduced in cks1-38 cells. The role of Cks1 in promoting G1 cyclin-CDK protein kinase activity both in vitro and in vivo provides a simple molecular rationale for the essential role of CKS1 in progression through G1 phase in budding yeast.


1977 ◽  
Vol 168 (2) ◽  
pp. 307-310 ◽  
Author(s):  
P J England

When hearts from control and phosphorylase kinase-deficient (I strain) mice were perfused with 0.1 micrometer-DL-isoprenaline, there was a parallel increase in contraction, cyclic AMP concentration and troponin I phosphorylation. However, there was no increase in phosphorylase a in the I-strain hearts, whereas the control hearts showed a large increase. Assays of I-strain heart extracts showed a normal cyclic AMP-dependent protein kinase activity but no phosphorylase kinase activity. It is concluded that troponin I is phosphorylated in intact hearts by protein kinase and not phosphorylase kinase.


1986 ◽  
Vol 6 (6) ◽  
pp. 2033-2040 ◽  
Author(s):  
H Piwnica-Worms ◽  
D R Kaplan ◽  
M Whitman ◽  
T M Roberts

We have constructed a recombinant murine retrovirus which efficiently transduces avian pp60c-src into murine cells and which is easily rescued from infected cells in plasmid form. To characterize the virus, several randomly selected NIH 3T3 lines were isolated after infection with recombinant retroviral stocks. All lines overproduced avian pp60c-src and appeared morphologically normal. Immunoprecipitates made from these lines with antisera specific for pp60c-src were tested for their kinase activities in vitro. We find that both autokinase and enolase kinase activities increase proportionately with the level of pp60c-src in the immunoprecipitates. To further test the authenticity of the pp60c-src encoded by the retroviral vector, these analyses were repeated in the presence of polyomavirus middle T antigen. Avian pp60c-src was activated as a protein kinase, indicating that the virally encoded pp60c-src interacts normally with middle T antigen. Interestingly, by increasing the intracellular levels of pp60c-src 15-fold over normal endogenous levels, we were unable to obtain a proportionate increase in the amount of middle-T-antigen-pp60c-src complex. Finally, using the shuttle features designed into the vector, we have isolated the first fully processed cDNA encoding functional avian pp60c-src X pp60c-src synthesized in vitro with this cDNA had intrinsic protein kinase activity and no detectable phosphatidylinositol kinase activity.


2001 ◽  
Vol 276 (15) ◽  
pp. 12369-12377 ◽  
Author(s):  
Heidi Kieschnick ◽  
Therese Wakefield ◽  
Carl Anthony Narducci ◽  
Con Beckers

The role of calcium-dependent protein kinases in the invasion ofToxoplasma gondiiinto its animal host cells was analyzed. KT5926, an inhibitor of calcium-dependent protein kinases in other systems, is known to block the motility ofToxoplasmatachyzoites and their attachment to host cells.In vivo, KT5926 blocks the phosphorylation of only three parasite proteins, and in parasite extracts only a single KT5926-sensitive protein kinase activity was detected. This activity was calcium-dependent but did not require calmodulin. In a search for calcium-dependent protein kinases inToxoplasma, two members of the class of calmodulin-like domain protein kinases (CDPKs) were detected. TgCDPK2 was only expressed at the mRNA level in tachyzoites, but no protein was detected. TgCDPK1 protein was expressed inToxoplasmatachyzoites and cofractionated precisely with the peak of KT5926-sensitive protein kinase activity. TgCDPK1 kinase activity was calcium-dependent but did not require calmodulin or phospholipids. TgCDPK1 was found to be inhibited effectively by KT5926 at concentrations that block parasite attachment to host cells.In vitro, TgCDPK1 phosphorylated three parasite proteins that migrated identical to the three KT5926-sensitive phosphoproteins detectedin vivo. Based on these observations, a central role is suggested for TgCDPK1 in regulatingToxoplasmamotility and host cell invasion.


2004 ◽  
Vol 32 (2) ◽  
pp. 330-331 ◽  
Author(s):  
L.C. Foukas ◽  
P.R. Shepherd

Class I phosphoinositide 3-kinases were originally characterized as lipid kinases, although more than 10 years ago they were also found to phosphorylate protein serine residues. However, while there is a vast amount of data on the function of this lipid kinase activity, relatively little is known about the function of the protein kinase activity. We discuss the evidence that suggests that the protein kinase activity of phosphoinositide 3-kinases mediates important signalling functions in cells.


1990 ◽  
Vol 10 (10) ◽  
pp. 5197-5206 ◽  
Author(s):  
N Abraham ◽  
A Veillette

Mutation of the major site of in vivo tyrosine phosphorylation of p56lck (tyrosine 505) to a phenylalanine constitutively enhances the p56lck-associated tyrosine-specific protein kinase activity. The mutant polypeptide is extensively phosphorylated in vivo at the site of in vitro Lck autophosphorylation (tyrosine 394) and is capable of oncogenic transformation of rodent fibroblasts. These observations have suggested that phosphorylation at Tyr-505 down regulates the tyrosine protein kinase activity of p56lck. Herein we have attempted to examine whether other posttranslational modifications may be involved in regulation of the enzymatic function of p56lck. The results indicated that activation of p56lck by mutation of Tyr-505 was prevented by a tyrosine-to-phenylalanine substitution at position 394. Furthermore, activation of p56lck by mutation of the carboxy-terminal tyrosine residue was rendered less efficient by substituting an alanine residue for the amino-terminal glycine. This second mutation prevented p56lck myristylation and stable membrane association and was associated with decreased in vivo phosphorylation at Tyr-394. Taken together, these findings imply that lack of phosphorylation at Tyr-505 may be insufficient for enhancement of the p56lck-associated tyrosine protein kinase activity. Our data suggest that activation of p56lck may be dependent on phosphorylation at Tyr-394 and that this process may be facilitated by myristylation, membrane association, or both.


1996 ◽  
Vol 132 (4) ◽  
pp. 635-641 ◽  
Author(s):  
M Sekimata ◽  
K Tsujimura ◽  
J Tanaka ◽  
Y Takeuchi ◽  
N Inagaki ◽  
...  

We have previously reported that Ser13 and Ser34 on glial fibrillary acidic protein (GFAP) in the cleavage furrow of glioma cells are phosphorylated during late mitotic phase (Matsuoka, Y., K. Nishizawa, T. Yano, M. Shibata, S. Ando, T. Takahashi, and M. Inagaki. 1992, EMBO (Eur. Mol. Biol. Organ.) J. 11:2895-2902). This observation implies a possibility that there is a protein kinase specifically activated at metaphase-anaphase transition. To further analyze the cell cycle-dependent GFAP phosphorylation, we prepared monoclonal antibodies KT13 and KT34 which recognize the phosphorylation of GFAP at Ser13 and Ser34, respectively. Immunocytochemical studies with KT13 and KT34 revealed that the GFAP phosphorylation in the cleavage furrow during late mitotic phase occurred not only in glioma cells but also in human SW-13 and mouse Ltk- cells in which GFAP was ectopically expressed, thus the phosphorylation can be monitored in a wide range of cell types. Furthermore, we detected kinase activity which phosphorylates GFAP at Ser13 and Ser34 in the lysates of late mitotic cells but not in those of interphase cells or early mitotic cells. These results suggest that there exists a protein kinase which is specifically activated at the transition of metaphase to anaphase not only in GFAP-expressing cells but also in cells without GFAP.


Sign in / Sign up

Export Citation Format

Share Document