Cloning, expression and subcellular localization of two novel splice variants of mouse transient receptor potential channel 2

2000 ◽  
Vol 351 (1) ◽  
pp. 115-122 ◽  
Author(s):  
Thomas HOFMANN ◽  
Michael SCHAEFER ◽  
Günter SCHULTZ ◽  
Thomas GUDERMANN

Transient receptor potential channels (TRPCs) are known as candidate molecular correlates of receptor-activated or store-operated calcium entry. While functional roles for most TRPCs have been suggested, the physiological relevance of TRPC2 remains obscure. Whereas human and bovine TRPC2 are candidate pseudogenes, full-length rodent TRPC2 transcripts have been reported. There is, however, considerable controversy concerning mRNA splicing, tissue distribution and the function of these proteins. We report the molecular cloning of two novel murine TRPC2 splice variants, mTRPC2α and mTRPC2β. mTRPC2α RNA is expressed at low levels in many tissues and cell systems, while mTRPC2β is exclusively and abundantly expressed in the vomeronasal organ (VNO). When expressed in human embryonic kidney (HEK)-293 cells, mTRPC2 did not enhance receptor- or store-activated calcium entry. In order to investigate the basis of such a functional defect, mTRPC2–green fluorescent protein fusion proteins were examined by confocal microscopy. Fusion proteins were retained in endomembranes when expressed in HEK-293 or other cells of epithelial or neuronal origin. Co-expression of TRPC2 with other TRPCs did not restore plasma-membrane trafficking. We conclude that TRPC2 may form functional channels in the cellular context of the VNO, but is unlikely to have a physiological function in other tissues. The sequences of mTRPC2α and mTRPC2β have been submitted to GenBank under the accession numbers AF230802 and AF230803 respectively.

2004 ◽  
Vol 286 (3) ◽  
pp. F546-F551 ◽  
Author(s):  
Carie S. Facemire ◽  
Peter J. Mohler ◽  
William J. Arendshorst

In the resistance vessels of the renal microcirculation, store- and/or receptor-operated calcium entry contribute to the rise in vascular smooth muscle cell (VSMC) intracellular calcium concentration in response to vasoconstrictor hormones. Short transient receptor potential (TRPC) channels are widely expressed in mammalian tissues and are proposed mediators of voltage-independent cation entry in multiple cell types, including VSMCs. The seven members of the TRPC gene family (TRPC1-7) encode subunit proteins that are thought to form homo- and heterotetrameric channels that are differentially regulated depending on their subunit composition. In the present study, we demonstrate the relative abundance of TRPC mRNA and protein in freshly isolated rat renal resistance vessels, glomeruli, and aorta. TRPC1, 3, 4, 5, and 6 mRNA and protein were detected in both renal resistance vessels and aorta, whereas TRPC2 and TRPC7 mRNA were not expressed. TRPC1, 3, 5, and 6 protein was present in glomeruli. TRPC3 and TRPC6 protein levels were significantly greater in the renal resistance vessels, about six- to eightfold higher than in aorta. These data suggest that TRPC3 and TRPC6 may play a role in mediating voltage-independent calcium entry in renal resistance vessels that is functionally distinct from that in aorta.


2013 ◽  
Vol 33 (suppl_1) ◽  
Author(s):  
Fadi T Khasawneh ◽  
Enma V Espinosa ◽  
Olivia A Lin ◽  
John P Murad

Although changes in the intracellular levels of calcium is a central step in platelet activation, the underlying mechanism of changes that are dependent on receptor-operated calcium entry (ROCE) remains to be defined. Furthermore, it was proposed, though never proven, that the Transient Receptor-Potential Channels (TRPCs) may play a key role in this process. In this connection, we have previously shown that TRPC6 plays a vital role in physiological hemostasis and thrombogenesis. However, the underlying mechanism by which TRPC6 modulates these processes also remains to be determined. Based on these considerations, we hypothesized that TRPC6 plays an essential role in ROCE and hence platelet function. Using a (genetic) TRPC6 knockout (KO) mouse approach, our preliminary studies revealed that these platelets exhibited a defect in platelet aggregation induced by the thromboxane A 2 receptor (TPR) agonist U46619. Conversely, the aggregation response triggered by ADP or the thrombin receptor activating peptide 4 (TRAP4) was found to be comparable to that of the wild-type (WT) platelets. Separate studies revealed that the TRPC6 deficient platelets were also found to exhibit a defect in TPR-mediated dense granule (ATP) secretion, whereas that of ADP and TRAP4 was normal. Moreover, we observed a defect in integrin GP IIb-IIIa activation that was again specific to TPR (normal activation in response to ADP and TRAP4), suggesting a defect in inside-out signaling. Finally, TPR-dependent CE was also found to be deficient in the TRPC6 KO platelets, unlike that stimulated by ADP or TRAP4. Future studies will further investigate the molecular mechanism of TRPC6-regulated platelet function and CE. Taken together, these findings demonstrate for the first time that TRPC6 regulates CE in a TPR-dependent manner and that this regulation consequently modulates platelet aggregation, secretion, as well as GP IIb-IIIa activation. These studies may define a new therapeutic target for managing multiple thrombosis-based disorders.


2017 ◽  
Vol 112 (3) ◽  
pp. 250a
Author(s):  
Young-Soo Kim ◽  
Chan Sik Hong ◽  
Sang Weon Lee ◽  
Joo Hyun Nam ◽  
Byung Joo Kim

Physiology ◽  
2021 ◽  
Vol 36 (5) ◽  
pp. 292-306
Author(s):  
Heather A. Drummond

Loss of pressure-induced vasoconstriction increases susceptibility to renal and cerebral vascular injury. Favored paradigms underlying initiation of the response include transient receptor potential channels coupled to G protein-coupled receptors or integrins as transducers. Degenerin channels may also mediate the response. This review addresses the 1) evolutionary role of these molecules in mechanosensing, 2) limitations to identifying mechanosensitive molecules, and 3) paradigm shifting molecular model for a VSMC mechanosensor.


Sign in / Sign up

Export Citation Format

Share Document