Elongated dermatan sulphate in post-inflammatory healing skin distributes among collagen fibrils separated by enlarged interfibrillar gaps

2001 ◽  
Vol 358 (1) ◽  
pp. 157-163 ◽  
Author(s):  
Kumiko KUWABA ◽  
Miya KOBAYASHI ◽  
Yoshihiro NOMURA ◽  
Shinkichi IRIE ◽  
Yoh-ichi KOYAMA

It has been reported that the disaccharide composition of dermatan sulphate shows transient changes after epicutaneous application of the hapten 2,4-dinitrofluorobenzene to mouse skin, and that these changes are most conspicuous in healing skin on day 15 after chemical insult [Kuwaba, Nomura, Irie and Koyama (1999) J. Dermatol. Sci. 19, 23–30]. In the present study it was found that the molecular size of dermatan sulphate was increased on day 15 after hapten application. The molecular size of decorin increased in healing skin, whereas the size of dermatan-sulphate-depleted core protein did not increase. The length and localization of decorin dermatan sulphate were investigated by electron microscopy. Dermatan sulphate filaments oriented orthogonally to collagen fibrils were longer in healing skin than in control skin. In control skin, dermatan sulphate filaments were found among tightly packed collagen fibrils. In contrast, the interfibrillar gaps between each collagen fibril were enlarged in healing skin; elongated dermatan sulphate filaments extended from the surface of collagen fibrils across the enlarged gap. These results suggest that the increase in molecular size of decorin dermatan sulphate is important in organizing collagen fibrils separated by enlarged interfibrillar gaps in healing skin.

1984 ◽  
Vol 99 (6) ◽  
pp. 2024-2033 ◽  
Author(s):  
D E Birk ◽  
R L Trelstad

The regulation of collagen fibril, bundle, and lamella formation by the corneal fibroblasts, as well as the organization of these elements into an orthogonal stroma, was studied by transmission electron microscopy and high voltage electron microscopy. Transmission and high voltage electron microscopy of chick embryo corneas each demonstrated a series of unique extracellular compartments. Collagen fibrillogenesis occurred within small surface recesses. These small recesses usually contained between 5 and 12 collagen fibrils with typically mature diameters and constant intrafibrillar spacing. The lateral fusion of the recesses resulted in larger recesses and consequent formation of prominent cell surface foldings. Within these surface foldings, bundles that contained 50-100 collagen fibrils were formed. The surface foldings continued to fuse and the cell surface retracted, forming large surface-associated compartments in which bundles coalesced to form lamellae. High voltage electron microscopy of 0.5 micron sections cut parallel to the corneal surface revealed that the corneal fibroblasts and their processes had two major axes at approximately right angles to one another. The surface compartments involved in the production of the corneal stroma were aligned along the fibroblast axes and the orthogonality of the cell was in register with that of the extracellular matrix. In this manner, corneal fibroblasts formed collagen fibrils, bundles, and lamellae within a controlled environment and thereby determined the architecture of the corneal stroma by the configuration of the cell and its associated compartments.


2016 ◽  
Vol 22 (3) ◽  
pp. 599-611 ◽  
Author(s):  
Jeffrey R. Tonniges ◽  
Benjamin Albert ◽  
Edward P. Calomeni ◽  
Shuvro Roy ◽  
Joan Lee ◽  
...  

AbstractThe quantity and quality of collagen fibrils in the extracellular matrix (ECM) have a pivotal role in dictating biological processes. Several collagen-binding proteins (CBPs) are known to modulate collagen deposition and fibril diameter. However, limited studies exist on alterations in the fibril ultrastructure by CBPs. In this study, we elucidate how the collagen receptor, discoidin domain receptor 1 (DDR1) regulates the collagen content and ultrastructure in the adventitia of DDR1 knock-out (KO) mice. DDR1 KO mice exhibit increased collagen deposition as observed using Masson’s trichrome. Collagen ultrastructure was evaluated in situ using transmission electron microscopy, scanning electron microscopy, and atomic force microscopy. Although the mean fibril diameter was not significantly different, DDR1 KO mice had a higher percentage of fibrils with larger diameter compared with their wild-type littermates. No significant differences were observed in the length of D-periods. In addition, collagen fibrils from DDR1 KO mice exhibited a small, but statistically significant, increase in the depth of the fibril D-periods. Consistent with these observations, a reduction in the depth of D-periods was observed in collagen fibrils reconstituted with recombinant DDR1-Fc. Our results elucidate how DDR1 modulates collagen fibril ultrastructure in vivo, which may have important consequences in the functional role(s) of the underlying ECM.


1986 ◽  
Vol 6 (10) ◽  
pp. 879-888 ◽  
Author(s):  
J. E. Scott ◽  
M. Haigh

Rabbit annulus fibrosus and nucleus pulposus were analysed for hydroxyproline, chondroitin sulphate, keratan sulphate and dermatan sulphate. Tissue proteoglycans were stained for electron microscopy with Cupromeronic blue, used in the critical electrolyte concentration mode, with and without prior digestion by chondroitinase AC or ABC, hyaluronidase or keratanase. Collagen bands, a—e were demonstrated with UO2++. A chondroitin sulphate proteoglycan was found orthogonally associated with loosely packed collagen fibrils in annulus fibrosus at the d and e bands. The close metabolic and structural analogies with the dermatan sulphate proteoglycans previously shown to be located at collagen d-e bands in tendon, skin, etc. (Scott and Haigh (1985) Biosci. Rep.5:71–81), are discussed. Tightly packed annulus collagen fibrils were surrounded by axially oriented proteoglycan filaments, mostly without specific locations.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Aleksandra Gonciaruk ◽  
Matthew R. Hall ◽  
Michael W. Fay ◽  
Christopher D. J. Parmenter ◽  
Christopher H. Vane ◽  
...  

AbstractGas storage and recovery processes in shales critically depend on nano-scale porosity and chemical composition, but information about the nanoscale pore geometry and connectivity of kerogen, insoluble organic shale matter, is largely unavailable. Using adsorption microcalorimetry, we show that once strong adsorption sites within nanoscale network are taken, gas adsorption even at very low pressure is governed by pore width rather than chemical composition. A combination of focused ion beam with scanning electron microscopy and transmission electron microscopy reveal the nanoscale structure of kerogen includes not only the ubiquitous amorphous phase but also highly graphitized sheets, fiber- and onion-like structures creating nanoscale voids accessible for gas sorption. Nanoscale structures bridge the current gap between molecular size and macropore scale in existing models for kerogen, thus allowing accurate prediction of gas sorption, storage and diffusion properties in shales.


The collagen fibril diameter distribution of four immature tissues from both rat and sheep have been determined from transverse sections observed in the transmission electron microscope. In many instances before birth, the form of the distribution for the tissues is both unimodal and sharp and the mean diameters of the distributions lie close to a multiple of 80 Å. For some tissues, the collagen fibril diameter distributions may be resolved into a number of components, each of which represents a population of fibrils with a diameter close to a multiple of 80 Å (8 nm). These data confirm and extend previous observations by the authors that small collagen fibrils all have diameters that are multiples of about 80 Å and that the fibril growth occurs by the accretion of 80 Å units. The form of the collagen fibril diameter distribution at birth is broad for the sheep tissues but narrow for the rat tissues, thus confirming that the range of fibril diameters at this stage of life reflects the differing degree of development of precocious and altricious animals.


1974 ◽  
Vol 60 (1) ◽  
pp. 92-127 ◽  
Author(s):  
Melvyn Weinstock ◽  
C. P. Leblond

The elaboration of dentin collagen precursors by the odontoblasts in the incisor teeth of 30–40-g rats was investigated by electron microscopy, histochemistry, and radioautography after intravenous injection of tritium-labeled proline. At 2 min after injection, when the labeling of blood proline was high, radioactivity was restricted to the rough endoplasmic reticulum, indicating that it is the site of synthesis of the polypeptide precursors of collagen, the pro-alpha chains. At 10 min, when the labeling of blood proline had already declined, radioactivity was observed in spherical portions of Golgi saccules containing entangled threads, and, at 20 min, radioactivity appeared in cylindrical portions containing aggregates of parallel threads. The parallel threads measured 280–350 nm in length and stained with the low pH-phosphotungstic acid technique for carbohydrate and with the silver methenamine technique for aldehydes (as did extracellular collagen fibrils). The passage of label from spherical to cylindrical Golgi portions is associated with the reorganization of entangled into parallel threads, which is interpreted as the packing of procollagen molecules. Between 20 and 30 min, prosecretory and secretory granules respectively became labeled. These results indicate that the cylindrical portions of Golgi saccules transform into prosecretory and subsequently into secretory granules. Within these granules, the parallel threads, believed to be procollagen molecules, are transported to the odontoblast process. At 90 min and 4 h after injection, label was present in predentin, indicating that the labeled content of secretory granules had been released into predentin. This occurred by exocytosis as evidenced by the presence of secretory granules in fusion with the plasmalemma of the odontoblast process. It is proposed that pro-alpha chains give rise to procollagen molecules which assemble into parallel aggregates in the Golgi apparatus. Procollagen molecules are then transported within secretory granules to the odontoblast process and released by exocytosis. In predentin procollagen molecules would give rise to tropocollagen molecules, which would then polymerize into collagen fibrils.


2005 ◽  
Vol 38 (3) ◽  
pp. 433-443 ◽  
Author(s):  
Simone Vesentini ◽  
Alberto Redaelli ◽  
Franco M. Montevecchi

Observations by electron microscopy on thin sections of the metatarsal tendon of embryonic fowls show that in the 8-day embryo the earliest definable collagen fibrils of 80 Å in diameter are intimately associated with the cytoplasm of the compact, apparently syncytial, cells of which the tendon rudiment is composed. As development proceeds, some intracytoplasmic groups of fibrils are distinguishable, but intercellular spaces also develop and these gradually become filled with fibrils; finally, bundles are formed and lie packed between the adjacent cells. Soon the extracellular organization predominates until at 20days the average diameter of the fibrils is 400 Å and the normal 640 Å periodicity of collagen has been achieved. The morphological features demonstrated have been correlated with histochemical data, and the possible function of the various cellular components in the formation of the intercellular substance has been discussed. By the use of sections in which fibrils have been cut exactly transverse to the bundle axis it has been shown that each fibril is invested by interfibrillar material. As the diameter of the fibrils increases with age the relative volume of interfibrillar material within a bundle diminishes; it is therefore concluded that this material must contain either collagen or the necessary precursors in order to account for the enlargement of the fibrils. Thus the interfibrillar material is of fundamental importance to the formation and growth of the collagen fibrils.


1991 ◽  
Vol 98 (1) ◽  
pp. 107-122
Author(s):  
X. Wang ◽  
P. Traub

The karyo-cytoskeleton of cells cultured in vitro was investigated employing resinless section immunogold electron microscopy. Cells were entrapped in low-melting agarose, sequentially extracted with various buffers and digested with nucleases to obtain karyo-cytoskeletal frameworks and reacted with specific primary and gold-conjugated secondary antibodies or gold-conjugated protein A to decorate structural elements of these frameworks. Following embedment of the gold-labeled residual cell structures in diethylene glycol distearate and their sectioning, the embedding material was removed with organic solvent and the sections were finally subjected to CO2 critical point drying. When this technique was applied to mouse skin fibroblasts (MSF), it revealed a dense and salt-stable intranuclear network of fibrogranular material. Antibodies directed against vimentin and lamin B detected a cytoplasmic meshwork of intermediate filaments (IFs) and a nuclear lamina, respectively; the latter, however, only after removal of chromatin from nuclei by nuclease digestion of DNA. Intranuclear filaments free of adhering globular material were morphologically very similar to cytoplasmic vimentin filaments. By contrast, mouse plasmacytoma MPC-11 cells lacking detectable amounts of cytoplasmic IF proteins and lamins A and C were devoid of a salt-stable internal nuclear matrix. The same holds true for MPC-11 cells that had been treated with the phorbol ester 12-O-tetradecanoylphorbol-13-acetate to induce vimentin synthesis and establish a cytoplasmically extended IF network. These findings were in accordance with the biochemical behavior of Triton X-100-treated MSF and MPC-11 cells and their appearance in immunofluorescence microscopy upon extraction with high ionic strength buffer. While the chromatin was quantitatively retained in the residual cell structures derived from MSF cells, in those obtained from MPC-11 cells the nuclear lamina was disrupted and the chromatin was released from the nuclei, suggesting that MPC-11 cells lack the salt-stable nuclear scaffold to which chromatin is normally anchored.


Sign in / Sign up

Export Citation Format

Share Document