Growth and development of collagen fibrils in immature tissues from rat and sheep

The collagen fibril diameter distribution of four immature tissues from both rat and sheep have been determined from transverse sections observed in the transmission electron microscope. In many instances before birth, the form of the distribution for the tissues is both unimodal and sharp and the mean diameters of the distributions lie close to a multiple of 80 Å. For some tissues, the collagen fibril diameter distributions may be resolved into a number of components, each of which represents a population of fibrils with a diameter close to a multiple of 80 Å (8 nm). These data confirm and extend previous observations by the authors that small collagen fibrils all have diameters that are multiples of about 80 Å and that the fibril growth occurs by the accretion of 80 Å units. The form of the collagen fibril diameter distribution at birth is broad for the sheep tissues but narrow for the rat tissues, thus confirming that the range of fibril diameters at this stage of life reflects the differing degree of development of precocious and altricious animals.

2016 ◽  
Vol 22 (3) ◽  
pp. 599-611 ◽  
Author(s):  
Jeffrey R. Tonniges ◽  
Benjamin Albert ◽  
Edward P. Calomeni ◽  
Shuvro Roy ◽  
Joan Lee ◽  
...  

AbstractThe quantity and quality of collagen fibrils in the extracellular matrix (ECM) have a pivotal role in dictating biological processes. Several collagen-binding proteins (CBPs) are known to modulate collagen deposition and fibril diameter. However, limited studies exist on alterations in the fibril ultrastructure by CBPs. In this study, we elucidate how the collagen receptor, discoidin domain receptor 1 (DDR1) regulates the collagen content and ultrastructure in the adventitia of DDR1 knock-out (KO) mice. DDR1 KO mice exhibit increased collagen deposition as observed using Masson’s trichrome. Collagen ultrastructure was evaluated in situ using transmission electron microscopy, scanning electron microscopy, and atomic force microscopy. Although the mean fibril diameter was not significantly different, DDR1 KO mice had a higher percentage of fibrils with larger diameter compared with their wild-type littermates. No significant differences were observed in the length of D-periods. In addition, collagen fibrils from DDR1 KO mice exhibited a small, but statistically significant, increase in the depth of the fibril D-periods. Consistent with these observations, a reduction in the depth of D-periods was observed in collagen fibrils reconstituted with recombinant DDR1-Fc. Our results elucidate how DDR1 modulates collagen fibril ultrastructure in vivo, which may have important consequences in the functional role(s) of the underlying ECM.


2021 ◽  
pp. 039156032110186
Author(s):  
Vibhore Agarwal ◽  
Sher Singh Yadav ◽  
Sanjay Kumar ◽  
Nishkarsh Mehta ◽  
Gagandeep Talwar ◽  
...  

Objectives: To our knowledge, EVs (extracellular vesicles) are heterogenous encapsulated nanoparticles generated by the biological cells. EVs can be found in blood, urine and tissue of origin. They contain DNAs, RNAs, proteins specific to the cell of origin. It has been found that in PCa, increase in number of EVs can modulate phenotype and function of the recipient cells. Methods: This prospective randomized double-blind pilot study was conducted in the SMS Medical College, Jaipur in collaboration with All India Institute of Medical Sciences, New Delhi. For morphometric analysis, the number of extracellular vesicles per micrograph were counted under transmission electron microscope. Results: Out of 16 patients taken in our study, six were in group 1 (BPH group) and 10 were in group 2 (PCa group). The mean number of EVs was significantly higher in the cells of group 2 in comparison to the group 1. Among the PCa patients, mean number of EVs were 25, 30, 35, 43, 46 for the Gleason score 6, 7, 8, 9, 10 respectively. In our study the mean number of EVs in the newly diagnosed PCa group was less as compared to the CSPC and CRPC group. Conclusions: EVs are membrane bound particles shed regularly from the cells in the extracellular milieu under normal physiological and pathological conditions. In our study the number of EVs were more in the PCa cells in comparison with the BPH cells and among the PCa cells they bear a positive correlation with the Gleason score, thus EVs have the potential to become a biomarker.


Author(s):  
R.A. Ploc

Three aberrations contribute to the loss of image resolution in the transmission electron microscope; spherical (SA=Csα3), chromatic (CA=Ccα△VV-1) and diffraction (DA=O.61ƛα-1). For high voltage incident electrons and thin materials most microscopists assume resolution is controlled by spherical and diffraction aberrations. We shall discuss whether equating the SA and DA to derive an optimum aperture size (related to αo) and resolution limit (1) is a valid procedure.To determine △V for a given material requires the use of either the Bethe or Landau equations. The Landau formula can be used to give the width of the energy spectrum and the Bethe equation, the mean energy loss after the incident electrons pass through the foil. Since the former is the most probable quantity contributing to CA, Figures 1 and 2 are based on the use of the Landau equation. Zirconium of thickness, t, will be considered for the accelerating voltages 105 and 106 eV.


Micron ◽  
2009 ◽  
Vol 40 (5-6) ◽  
pp. 665-668 ◽  
Author(s):  
Mitsuhiro Okuda ◽  
Masaki Takeguchi ◽  
Motohiro Tagaya ◽  
Toru Tonegawa ◽  
Ayako Hashimoto ◽  
...  

Data on the distribution of collagen fibril diameters in various connective tissues have been collected and analysed for common features. The diameter distributions of the collagen fibrils at birth and in the foetal stages of development are unimodal, whereas at maturity the mass-average diameter of the collagen fibrils is generally larger than at birth and the distributions of fibril sizes may be either unimodal or bimodal depending on the tissue. At senescence, few data are available but in most instances both the mean and mass-average diameters of the collagen fibrils are smaller than those at maturity and the fibril distributions are mainly bimodal. The division between tissues showing unimodal or bimodal fibril distributions at maturity does not simply relate to the type I collagen/type II collagen classification, to the distinction between orientated and unorientated material or indeed directly to the levels of stress and strain encountered by the tissue. However, there may prove to be a relation between a bimodal fibril diameter distribution at maturity and the maintenance over long periods of time of either high stress in stretched tissues or low stress in compressed tissues. It has also been noted that the width of the collagen fibril diameter distribution at birth differs between altricious and precocious animals. The ultimate tensile strength of a connective tissue and the mass-average diameter of the constituent collagen fibrils have been shown to have a positive correlation. Further, the form of the collagen fibril diameter distribution can be directly related to the mechanical properties of the tissue. In particular, it is postulated that the size distribution of the collagen fibrils is largely determined by two factors. First, if the tissue is primarily designed to have high tensile strength, then an increase in the diameter of the collagen fibrils will parallel an increase in the potential density of intrafibrillar covalent crosslinks. Consequently large collagen fibrils are predicted to have a greater tensile strength than small fibrils. Secondly, if the tissue is designed to be elastic and hence withstand creep, then a reduction in the diameter of the collagen fibrils will effectively increase the surface area per unit mass of the fibrils thus enhancing the probability of interfibrillar non-covalent crosslinks between the collagen fibrils and the components of the matrix. The idealized description given may indicate how the mechanical properties of a tissue may be interpreted in terms of the collagen fibril diameter distribution.


Author(s):  
R. A. Waugh ◽  
J. R. Sommer

Cardiac sarcoplasmic reticulum (SR) is a complex system of intracellular tubules that, due to their small size and juxtaposition to such electron-dense structures as mitochondria and myofibrils, are often inconspicuous in conventionally prepared electron microscopic material. This study reports a method with which the SR is selectively “stained” which facilitates visualizationwith the transmission electron microscope.


Author(s):  
Sanford H. Vernick ◽  
Anastasios Tousimis ◽  
Victor Sprague

Recent electron microscope studies have greatly expanded our knowledge of the structure of the Microsporida, particularly of the developing and mature spore. Since these studies involved mainly sectioned material, they have revealed much internal detail of the spores but relatively little surface detail. This report concerns observations on the spore surface by means of the transmission electron microscope.


Author(s):  
H. Tochigi ◽  
H. Uchida ◽  
S. Shirai ◽  
K. Akashi ◽  
D. J. Evins ◽  
...  

A New High Excitation Objective Lens (Second-Zone Objective Lens) was discussed at Twenty-Sixth Annual EMSA Meeting. A new commercially available Transmission Electron Microscope incorporating this new lens has been completed.Major advantages of the new instrument allow an extremely small beam to be produced on the specimen plane which minimizes specimen beam damages, reduces contamination and drift.


Author(s):  
G. Cliff ◽  
M.J. Nasir ◽  
G.W. Lorimer ◽  
N. Ridley

In a specimen which is transmission thin to 100 kV electrons - a sample in which X-ray absorption is so insignificant that it can be neglected and where fluorescence effects can generally be ignored (1,2) - a ratio of characteristic X-ray intensities, I1/I2 can be converted into a weight fraction ratio, C1/C2, using the equationwhere k12 is, at a given voltage, a constant independent of composition or thickness, k12 values can be determined experimentally from thin standards (3) or calculated (4,6). Both experimental and calculated k12 values have been obtained for K(11<Z>19),kα(Z>19) and some Lα radiation (3,6) at 100 kV. The object of the present series of experiments was to experimentally determine k12 values at voltages between 200 and 1000 kV and to compare these with calculated values.The experiments were carried out on an AEI-EM7 HVEM fitted with an energy dispersive X-ray detector.


Sign in / Sign up

Export Citation Format

Share Document