Role of connective tissue growth factor in the pathogenesis of diabetic nephropathy

2001 ◽  
Vol 359 (1) ◽  
pp. 77-87 ◽  
Author(s):  
Nadia Abdel WAHAB ◽  
Natalia YEVDOKIMOVA ◽  
Benjamin S. WESTON ◽  
Terry ROBERTS ◽  
Xin Jun LI ◽  
...  

We characterized a rabbit polyclonal antibody raised against human recombinant connective tissue growth factor (CTGF). The antibody recognised a higher molecular mass form (approx. 56kDa) of CTGF in mesangial cell lysates as well as the monomeric (36–38kDa) and lower molecular mass forms (< 30kDa) reported previously. Immunohistochemistry detected CTGF protein in glomeruli of kidneys of non-obese diabetic mice 14 days after the onset of diabetes, and this was prominent by 70 days. CTGF protein is also present in glomeruli of human patients with diabetic nephropathy. No CTGF was detected in either normal murine or human glomeruli. Transient transfection of a transformed human mesangial cell line with a CTGF–V5 epitope fusion protein markedly increased fibronectin and plasminogen activator inhibitor-1 synthesis in cultures maintained in normal glucose (4mM) conditions; a CTGF-antisense construct reduced the elevated synthesis of these proteins in high glucose (30mM) cultures. Culture of primary human mesangial cells for 14 days in high glucose, or in low glucose supplemented with recombinant CTGF or transforming growth factor β1, markedly increased CTGF mRNA levels and fibronectin synthesis. However, whilst co-culture with a CTGF-antisense oligonucleotide reduced the CTGF mRNA pool by greater than 90% in high glucose, it only partially reduced fibronectin mRNA levels and synthesis. A chick anti-CTGF neutralizing antibody had a similar effect on fibronectin synthesis. Thus both CTGF and CTGF-independent pathways mediate increased fibronectin synthesis in high glucose. Nevertheless CTGF expression in diabetic kidneys is likely to be a key event in the development of glomerulosclerosis by affecting both matrix synthesis and, potentially through plasminogen activator inhibitor-1, its turnover.

Endocrinology ◽  
2004 ◽  
Vol 145 (12) ◽  
pp. 5646-5655 ◽  
Author(s):  
S. V. McLennan ◽  
X. Y. Wang ◽  
V. Moreno ◽  
D. K. Yue ◽  
S. M. Twigg

Abstract High glucose concentration inhibits matrix degradation and affects the activities of the enzymes responsible, the matrix metalloproteinases (MMPs) and their tissue inhibitors (TIMPs). Connective tissue growth factor (CTGF) expression is increased in diabetic nephropathy and is a downstream mediator of TGF-β actions. However, whether CTGF regulates matrix degradation and the mechanism of effect in diabetes has not been reported. Human mesangial cells were cultured in media containing 5 or 25 mm glucose and, in some experiments, with recombinant human (rh)CTGF (0–1000 ng/ml) and/or appropriate neutralizing antibodies. Matrix degradation was inhibited by rhCTGF in a dose-dependent manner, and the decrease in matrix degradation caused by high glucose and by TGF-β was significantly attenuated by addition of CTGF-neutralizing antibody (by 40.2 and 69.1%, respectively). Similar to 25 mm glucose, addition of rhCTGF increased MMP-2, TIMP-1, and TIMP-3 mRNA by 2.5-, 2.1-, and 1.6-fold, respectively (P &lt; 0.05) but had no effect on membrane-type (MT)1-MMP or TIMP-2. Addition of TIMP-1 antibody to conditioned medium abolished the decrease in degradation caused by rhCTGF and partially prevented (by 79%) the glucose-induced inhibition of matrix degradation. In vivo studies of glomeruli from diabetic and control rats showed that intensive insulin treatment prevented the increase in expression of CTGF and TIMP-1 and attenuated the decreased matrix degradation seen in diabetes. In summary, CTGF inhibits matrix degradation by increasing TIMP-1 expression, and by this action it contributes to the inhibition of matrix breakdown by high glucose, implying that CTGF has a role in the reduced matrix degradation observed in diabetic nephropathy.


2005 ◽  
Vol 67 (4) ◽  
pp. 1297-1307 ◽  
Author(s):  
Susanne B. Nicholas ◽  
Elsa Aguiniga ◽  
Yuelan Ren ◽  
Jason Kim ◽  
Joyce Wong ◽  
...  

Circulation ◽  
2007 ◽  
Vol 116 (suppl_16) ◽  
Author(s):  
William Bradham ◽  
Linda Gleaves ◽  
Mousumi Medda ◽  
Douglas Vaughan

Cardiac fibrosis is a common sequelae of cardiac injury and has deleterious functional consequences impacting cardiac filling, function and rhythm. Plasminogen activator inhibitor-1 (PAI-1) has been implicated in the pathogenesis of tissue fibrosis in mice. To investigate the longitudinal effect of PAI-1 on cardiac structure and function, M-mode echocardiography was employed to examine cardiac function in PAI-1 deficient (PAI-1 −/− ) and wild-type (WT) control mice in four age groups (6,12,18, 24 months). Eighteen month old PAI-1 −/− mice exhibited reduced left ventricular (LV) diastolic internal dimension ( p =0.0118) and a trend towards increased LV posterior wall (LVPW) thickness, compared to WT. Two year old PAI-1 −/− mice showed increased diastolic and systolic LVPW thickness ( p =0.0127 and p =0.0212, respectively), reduced diastolic and systolic LV internal dimension ( p =0.0486 and p =0.0124), but with preserved LV fractional shortening compared to WT. Histological examination of cardiac sections revealed fibrosis on the anterior epicardial surface of the hearts in 18 month old PKO, which in 26 month old mice had become confluent with extensive (10 –17% by area) epicardial, perivascular, and interstitial distribution (compared to none in WT). Real time polymerase chain reaction (RT-PCR) revealed upregulation of transforming growth factor beta (TGF-β) and fibroblast growth factor 2 in PAI-1 −/− compared to WT ( p =0.0234 and p =0.037, respectively). Immunofluoresence confirmed this finding with bright TGF-β staining localized in the media of intra-myocardial arterioles, and phosphorylated SMAD2/3, the downstream TGF-β signaling mediator, in areas of fibrosis. Thoracic aortic cells from aged (18 –24 month) PKO and WT mice were grown in culture, with RT-PCR revealing 4 fold increased TGF-β and 17 fold increased SMAD3 ( p <0.05 for both) RNA levels in PAI-1 −/− , supplying additional evidence for upregulation of a profibrotic TGF-β/SMAD tissue signaling pathway. The present study is one of the first to elucidate some of the functional consequences and relevant molecular signaling pathways related to aging and PAI-1 deficiency mediated cardiac fibrosis.


2001 ◽  
Vol 60 (1) ◽  
pp. 96-105 ◽  
Author(s):  
Shinong Wang ◽  
Mark Denichilo ◽  
Carrie Brubaker ◽  
Raimund Hirschberg

Sign in / Sign up

Export Citation Format

Share Document