Super-resolution optical microscopy of lipid plasma membrane dynamics

2015 ◽  
Vol 57 ◽  
pp. 69-80 ◽  
Author(s):  
Christian Eggeling

Plasma membrane dynamics are an important ruler of cellular activity, particularly through the interaction and diffusion dynamics of membrane-embedded proteins and lipids. FCS (fluorescence correlation spectroscopy) on an optical (confocal) microscope is a popular tool for investigating such dynamics. Unfortunately, its full applicability is constrained by the limited spatial resolution of a conventional optical microscope. The present chapter depicts the combination of optical super-resolution STED (stimulated emission depletion) microscopy with FCS, and why it is an important tool for investigating molecular membrane dynamics in living cells. Compared with conventional FCS, the STED-FCS approach demonstrates an improved possibility to distinguish free from anomalous molecular diffusion, and thus to give new insights into lipid–protein interactions and the traditional lipid ‘raft’ theory.

2018 ◽  
Author(s):  
Falk Schneider ◽  
Dominic Waithe ◽  
Silvia Galiani ◽  
Jorge Bernadino de la Serna ◽  
Erdinc Sezgin ◽  
...  

AbstractThe diffusion dynamics in the cellular plasma membrane provides crucial insights into the molecular interactions, organization and bioactivity. Fluorescence correlation spectroscopy combined with super-resolution stimulated emission depletion nanoscopy (STED-FCS) measures such dynamics with high spatial and temporal resolution and reveals nanoscale diffusion characteristics by measuring the molecular diffusion in conventional confocal mode and super-resolved STED mode sequentially. However, to directly link the spatial and the temporal information, a method that simultaneously measures the diffusion in confocal and STED modes is needed. Here, to overcome this problem, we establish an advanced STED-FCS measurement method; line interleaved excitation scanning STED-FCS (LIESS-FCS) which discloses the molecular diffusion modes at different spatial positions with a single measurement. It relies on fast beam-scanning along a line with alternating laser illumination that yields, for each pixel, the apparent diffusion coefficients for two different observation spot sizes (conventional confocal and super-resolved STED). We demonstrate the potential of the LIESS-FCS approach with simulations and experiments on lipid diffusion in model and live cell plasma membranes. We also apply LIESS-FCS to investigate the spatio-temporal organization of GPI-anchored proteins in the plasma membrane of live cells which interestingly show multiple diffusion modes at different spatial positions.


2021 ◽  
Author(s):  
Pablo Carravilla ◽  
Anindita Dasgupta ◽  
Gaukhar Zhurgenbayeva ◽  
Dmytro I. Danylchuk ◽  
Andrey S. Klymchenko ◽  
...  

Understanding the plasma membrane nano-scale organisation and dynamics in living cells requires microscopy techniques with high temporal and spatial resolution and long acquisition times, that also allow for the quantification of membrane biophysical properties such as lipid ordering. Among the most popular super-resolution techniques, stimulated emission depletion (STED) microscopy offers one of the highest temporal resolution, ultimately defined by the scanning speed. However, monitoring live processes using STED microscopy is significantly limited by photobleaching, which recently has been circumvented by exchangeable membrane dyes that only temporarily reside in the membrane. Here, we show that NR4A, a polarity-sensitive exchangeable plasma membrane probe based on Nile Red, permits the super-resolved quantification of membrane biophysical parameters in real time with high temporal and spatial resolution as well as long acquisition times. The potential of this polarity-sensitive exchangeable dyes is showcased by live-cell real-time 3D-STED recordings of bleb formation and lipid exchange during membrane fusion, as well as by STED-fluorescence correlation spectroscopy (STED-FCS) experiments for the simultaneous quantification of membrane dynamics and lipid packing, which correlate in model and live-cell membranes.


2019 ◽  
Author(s):  
Aurélien Barbotin ◽  
Silvia Galiani ◽  
Iztok Urbančič ◽  
Christian Eggeling ◽  
Martin Booth

Fluorescence correlation spectroscopy in combination with super-resolution stimulated emission depletion microscopy (STED-FCS) is a powerful tool to investigate molecular diffusion with sub-diffraction resolution. It has been of particular use for investigations of two dimensional systems like cell membranes, but has so far seen very limited applications to studies of three-dimensional diffusion. One reason for this is the extreme sensitivity of the axial (3D) STED depletion pattern to optical aberrations. We present here an adaptive optics-based correction method that compensates for these aberrations and allows STED-FCS measurements in the cytoplasm of living cells.


Viruses ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 608
Author(s):  
Jakub Chojnacki ◽  
Christian Eggeling

The ongoing threat of human immunodeficiency virus (HIV-1) requires continued, detailed investigations of its replication cycle, especially when combined with the most physiologically relevant, fully infectious model systems. Here, we demonstrate the application of the combination of stimulated emission depletion (STED) super-resolution microscopy with beam-scanning fluorescence correlation spectroscopy (sSTED-FCS) as a powerful tool for the interrogation of the molecular dynamics of HIV-1 virus assembly on the cell plasma membrane in the context of a fully infectious virus. In this process, HIV-1 envelope glycoprotein (Env) becomes incorporated into the assembling virus by interacting with the nascent Gag structural protein lattice. Molecular dynamics measurements at these distinct cell surface sites require a guiding strategy, for which we have used a two-colour implementation of sSTED-FCS to simultaneously target individual HIV-1 assembly sites via the aggregated Gag signal. We then compare the molecular mobility of Env proteins at the inside and outside of the virus assembly area. Env mobility was shown to be highly reduced at the assembly sites, highlighting the distinct trapping of Env as well as the usefulness of our methodological approach to study the molecular mobility of specifically targeted sites at the plasma membrane, even under high-biosafety conditions.


2019 ◽  
Author(s):  
Falk Schneider ◽  
Pablo Hernandez-Varas ◽  
B. Christoffer Lagerholm ◽  
Dilip Shrestha ◽  
Erdinc Sezgin ◽  
...  

AbstractProbing the diffusion of molecules has become a routine measurement across the life sciences, chemistry and physics. It provides valuable insights into reaction dynamics, oligomerisation, molecular (re-)organisation or cellular heterogeneities. Fluorescence correlation spectroscopy (FCS) is one of the widely applied techniques to determine diffusion dynamics in two and three dimensions. This technique relies on the temporal autocorrelation of intensity fluctuations but recording these fluctuations has thus far been limited by the detection electronics, which could not efficiently and accurately time-tag photons at high count rates. This has until now restricted the range of measurable dye concentrations, as well as the data quality of the FCS recordings, especially in combination with super-resolution stimulated emission depletion (STED) nanoscopy.Here, we investigate the applicability and reliability of (STED-)FCS at high photon count rates (average intensities of up to 40 MHz) using novel detection equipment, namely hybrid detectors and real-time gigahertz sampling of the photon streams implemented on a commercial microscope. By measuring the diffusion of fluorophores in solution and cytoplasm of live cells, as well as in model and cellular membranes, we show that accurate diffusion and concentration measurements are possible in these previously inaccessible high photon count regimes. Specifically, it offers much greater flexibility of experiments with biological samples with highly variable intensity, e.g. due to a wide range of expression levels of fluorescent proteins. In this context, we highlight the independence of diffusion properties of cytosolic GFP in a concentration range of approx. 0.01–1 μM. We further show that higher photon count rates also allow for much shorter acquisition times, and improved data quality. Finally, this approach also pronouncedly increases the robustness of challenging live cell STED-FCS measurements of nanoscale diffusion dynamics, which we testify by confirming a free diffusion pattern for a fluorescent lipid analogue on the apical membrane of adherent cells.


Viruses ◽  
2018 ◽  
Vol 10 (8) ◽  
pp. 415 ◽  
Author(s):  
Iztok Urbančič ◽  
Juliane Brun ◽  
Dilip Shrestha ◽  
Dominic Waithe ◽  
Christian Eggeling ◽  
...  

Human Immunodeficiency Virus type-1 (HIV-1) acquires its lipid membrane from the plasma membrane of the infected cell from which it buds out. Previous studies have shown that the HIV-1 envelope is an environment of very low mobility, with the diffusion of incorporated proteins two orders of magnitude slower than in the plasma membrane. One of the reasons for this difference is thought to be the HIV-1 membrane composition that is characterised by a high degree of rigidity and lipid packing, which has, until now, been difficult to assess experimentally. To further refine the model of the molecular mobility on the HIV-1 surface, we herein investigated the relative importance of membrane composition and curvature in simplified model membrane systems, large unilamellar vesicles (LUVs) of different lipid compositions and sizes (0.1–1 µm), using super-resolution stimulated emission depletion (STED) microscopy-based fluorescence correlation spectroscopy (STED-FCS). Establishing an approach that is also applicable to measurements of molecule dynamics in virus-sized particles, we found, at least for the 0.1–1 µm sized vesicles, that the lipid composition and thus membrane rigidity, but not the curvature, play an important role in the decreased molecular mobility on the vesicles’ surface. This observation suggests that the composition of the envelope rather than the particle geometry contributes to the previously described low mobility of proteins on the HIV-1 surface. Our vesicle-based study thus provides further insight into the dynamic properties of the surface of individual HIV-1 particles, as well as paves the methodological way towards better characterisation of the properties and function of viral lipid envelopes in general.


2017 ◽  
Author(s):  
Dominic Waithe ◽  
Falk Schneider ◽  
Jakub Chojnacki ◽  
Mathias Clausen ◽  
Dilip Shrestha ◽  
...  

AbstractScanning Fluorescence Correlation Spectroscopy (scanning FCS) is a variant of conventional point FCS that allows molecular diffusion at multiple locations to be measured simultaneously. It enables disclosure of potential spatial heterogeneity in molecular diffusion dynamics and also the acquisition of a large amount of FCS data at the same time, providing large statistical accuracy. Here, we optimize the processing and analysis of these large-scale acquired sets of FCS data. On one hand we present FoCuS-scan, scanning FCS software that provides an end-to-end solution for processing and analysing scanning data acquired on commercial turnkey confocal systems. On the other hand, we provide a thorough characterisation of large-scale scanning FCS data over its intended time-scales and applications and propose a unique solution for the bias and variance observed when studying slowly diffusing species. Our manuscript enables researchers to straightforwardly utilise scanning FCS as a powerful technique for measuring diffusion across a broad range of physiologically relevant length scales without specialised hardware or expensive software.


2020 ◽  
Vol 295 (15) ◽  
pp. 5036-5050 ◽  
Author(s):  
Tess A. Stanly ◽  
Marco Fritzsche ◽  
Suneale Banerji ◽  
Dilip Shrestha ◽  
Falk Schneider ◽  
...  

Lymphatic vessel endothelial hyaluronan receptor 1 (LYVE-1) mediates the docking and entry of dendritic cells to lymphatic vessels through selective adhesion to its ligand hyaluronan in the leukocyte surface glycocalyx. To bind hyaluronan efficiently, LYVE-1 must undergo surface clustering, a process that is induced efficiently by the large cross-linked assemblages of glycosaminoglycan present within leukocyte pericellular matrices but is induced poorly by the shorter polymer alone. These properties suggested that LYVE-1 may have limited mobility in the endothelial plasma membrane, but no biophysical investigation of these parameters has been carried out to date. Here, using super-resolution fluorescence microscopy and spectroscopy combined with biochemical analyses of the receptor in primary lymphatic endothelial cells, we provide the first evidence that LYVE-1 dynamics are indeed restricted by the submembranous actin network. We show that actin disruption not only increases LYVE-1 lateral diffusion but also enhances hyaluronan-binding activity. However, unlike the related leukocyte HA receptor CD44, which uses ERM and ankyrin motifs within its cytoplasmic tail to bind actin, LYVE-1 displays little if any direct interaction with actin, as determined by co-immunoprecipitation. Instead, as shown by super-resolution stimulated emission depletion microscopy in combination with fluorescence correlation spectroscopy, LYVE-1 diffusion is restricted by transient entrapment within submembranous actin corrals. These results point to an actin-mediated constraint on LYVE-1 clustering in lymphatic endothelium that tunes the receptor for selective engagement with hyaluronan assemblages in the glycocalyx that are large enough to cross-bridge the corral-bound LYVE-1 molecules and thereby facilitate leukocyte adhesion and transmigration.


Sign in / Sign up

Export Citation Format

Share Document