scholarly journals Function of different proportions of apolipoprotein A-I cysteine mutants and apolipoprotein A-V on recombinant high-density lipoproteins in vitro

2019 ◽  
Vol 39 (5) ◽  
Author(s):  
Ying Yan ◽  
Shulai Lu ◽  
Shaoyou Jia ◽  
Qingzhe Dong ◽  
Lei Wang ◽  
...  

Abstract To explore the anti-atherosclerotic effects of recombinant high-density lipoproteins (rHDL) of apolipoprotein AI wild-type (apoA-Iwt), apolipoprotein AI Milano (apoA-IM), apolipoprotein AI (N74C) (apoA-I (N74C) )and apolipoprotein AV (apoA-V). We constructed rHDL liposomes (rHDLs), which included apoA-Iwt, apoA-IM, and apoA-I (N74C), followed by the synthesis of rHDLs, with the indicated ratios of apoA-Iwt, apoA-IM, apoA-I (N74C) and apoA-V. We investigated the anti-atherosclerotic effects by experiments including the DMPC clearance assay and experiments that assessed the in vitro antioxidation against low-density lipoprotein, the cellular uptake of oxidized low-density lipoprotein (oxLDL) and the in vitro intracellular lipid accumulation. Electron microscopy results revealed that as more apoA-V was present in rHDLs, the particle size of rHDLs was larger. The DMPC clearance assay subsequently showed that rHDL protein mixtures could promote DMPC turbidity clearance when more apoA-V was included in the reaction mixtures, with apoAV-rHDL showing the strongest turbidity clearance ability (P<0.05 vs AI-rHDL). In vitro antioxidation against low-density lipoprotein assays indicated that rHDLs containing apoA-V had increasing oxidation resistance against low-density lipoprotein (LDL) with higher apoA-V contents. Finally, cellular uptake of oxLDL and intracellular lipids suggested an apparent oxidation resistance to LDL oxidation in vitro and a reduced intracellular lipid accumulation in THP-1-derived macrophages, with AIM-rHDL demonstrating the greatest ability to decrease intracellular lipid accumulation. Different proportions of apolipoprotein A-I cysteine mutants and apolipoprotein A-V of rHDL changed the lipid binding capacity, particle size, and antioxidant capacity. These changes may show a beneficial effect of rHDL on atherosclerosis.

2015 ◽  
Vol 308 (12) ◽  
pp. E1140-E1148 ◽  
Author(s):  
Yang Zhang ◽  
Kun Ling Ma ◽  
Jing Liu ◽  
Yu Wu ◽  
Ze Bo Hu ◽  
...  

Dyslipidemia plays crucial roles in the progression of diabetic nephropathy (DN). This study investigated the effects of high glucose on lipid accumulation in podocytes and explored its underlying mechanisms. Male db/m and db/db mice were fed a normal chow diet for 8 wk. Immortalised mouse podocytes were treated with or without high glucose for 24 h. The changes to the morphology and ultramicrostructures of the kidneys in mice were examined using pathological staining and electron microscopy. Intracellular lipid accumulation was evaluated by Oil Red O staining and a free cholesterol quantitative assay. The expressions of the molecules involved in low-density lipoprotein receptor (LDLr) pathway and podocyte injury were examined using immunofluorescent staining, real-time PCR, and Western blot. There were increased levels of plasma lipid, serum creatinine, and proteinuria in db/db mice compared with db/m mice. Moreover, there was significant mesangial matrix expansion, basement membrane thickening, podocyte foot process effacement, and phenotypic alteration in the db/db group. Additionally, lipid accumulation in the kidneys of db/db mice was increased due to increased protein expressions of LDLr, sterol regulatory element-binding protein (SREBP) cleavage-activating protein, and SREBP-2. These effects were further confirmed by in vitro studies. Interestingly, the treatment with LDLr siRNA inhibited lipid accumulation in podocytes and decreased the protein expression of molecules associated with phenotypic alteration in podocytes. High glucose disrupted LDLr feedback regulation in podocytes, which may cause intracellular lipid accumulation and alteration of podocyte phenotype, thereby accelerating DN progression.


2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
Hiroe Go ◽  
Jin Ah Ryuk ◽  
Hye Won Lee ◽  
In Sil Park ◽  
Ki-Jung Kil ◽  
...  

The present study was conducted to investigate the effect of Sagunja-tang on the lipid related disease in a rat model of menopausal hyperlipidemia and lipid accumulation in methyl-β-cyclodextrin-induced HepG2 cells. Inin vivostudy using menopausal hyperlipidemia rats, Sagunja-tang reduced retroperitoneal and perirenal fat, serum lipids, atherogenic index, cardiac risk factor, media thickness, and nonalcoholic steatohepatitis score, when compared to menopausal hyperlipidemia control rats. In HepG2 cells, Sagunja-tang significantly decreased the lipid accumulation, total cholesterol levels, and low-density/very-low-density lipoprotein levels. Moreover, Sagunja-tang reversed the methyl-β-cyclodextrin-induced decrease in the protein levels of critical molecule involved in cholesterol synthesis, sterol regulatory element binding protein-2, and low-density lipoprotein receptor and inhibited protein levels of 3-hydroxy-3-methylglutaryl coenzyme A reductase as well as activity. Phosphorylation level of AMP-activated protein kinase was stimulated by Sagunja-tang. These results suggest that Sagunja-tang has effect on inhibiting hepatic lipid accumulation through regulation of cholesterol synthesis and AMPK activityin vitro. These observations support the idea that Sagunja-tang is bioavailable bothin vivoandin vitroand could be developed as a preventive and therapeutic agent of hyperlipidemia in postmenopausal females.


2003 ◽  
Vol 47 (9) ◽  
pp. 2796-2803 ◽  
Author(s):  
Kishor M. Wasan ◽  
Olena Sivak ◽  
Richard A. Cote ◽  
Aaron I. MacInnes ◽  
Kathy D. Boulanger ◽  
...  

ABSTRACT The objective of this study was to determine the distribution profile of the novel endotoxin antagonist E5564 in plasma obtained from fasted human subjects with various lipid concentrations. Radiolabeled E5564 at 1 μM was incubated in fasted plasma from seven human subjects with various total cholesterol (TC) and triglyceride (TG) concentrations for 0.5 to 6 h at 37°C. Following these incubations, plasma samples were separated into their lipoprotein and lipoprotein-deficient fractions by ultracentrifugation and were assayed for E5564 radioactivity. TC, TG, and protein concentrations in each fraction were determined by enzymatic assays. Lipoprotein surface charge within control and phosphatidylinositol-treated plasma and E5564’s influence on cholesteryl ester transfer protein (CETP) transfer activity were also determined. We observed that the majority of E5564 was recovered in the high-density lipoprotein (HDL) fraction. We further observed that incubation in plasma with increased levels of TG-rich lipoprotein (TRL) lipid (TC and TG) concentrations resulted in a significant increase in the percentage of E5564 recovered in the TRL fraction. In further experiments, E5564 was preincubated in human TRL. Then, these mixtures were incubated in hypolipidemic human plasma for 0.5 and 6 h at 37°C. Preincubation of E5564 in purified TRL prior to incubation in human plasma resulted in a significant decrease in the percentage of drug recovered in the HDL fraction and an increase in the percentage of drug recovered in the TRL and low-density lipoprotein fractions. These findings suggest that the majority of the drug binds to HDLs. Preincubation of E5564 in TRL prior to incubation in normolipidemic plasma significantly decreased the percentage of drug recovered in the HDL fraction. Modifications to the lipoprotein negative charge did not alter the E5564 concentration in the HDL fraction. In addition, E5564 does not influence CETP-mediated transfer activity. Information from these studies could be used to help identify the possible components of lipoproteins which influence the interaction of E5564 with specific lipoprotein particles.


1979 ◽  
Vol 178 (2) ◽  
pp. 455-466 ◽  
Author(s):  
B S Suri ◽  
M E Targ ◽  
D S Robinson

1. The work reported was designed to provide quantitative information about the capacity of the extrahepatic tissues of the rat to degrade injected VLD lipoproteins (very-low-density lipoproteins, d less than 1.006) to LD lipoproteins (low-density lipoproteins, d 1.006–1.063) and to study the fate of the different VLD-lipoprotein apoproteins during the degradative process. 2. Rat liver VLD lipoproteins, radioactively labelled in their protein moieties, were produced by the perfusion of the organ and were either injected into the circulation of the supradiaphragmatic rats or incubated in rat plasma at 37 degrees C. At a time (75 min) when approx. 90% of the triacylglycerol of the VLD lipoproteins had been hydrolysed the supradiaphragmatic rats were bled and VLD lipoproteins, LD lipoproteins and HD lipoproteins (high-density lipoproteins, d 1.063–1.21) were separated from their plasma and from the plasma incubated in vitro. The apoproteins of each of the lipoprotein classes were resolved by gel-filtration chromatography into three main fractions, designated peaks I, II and III. 3. Incubation of the liver VLD lipoproteins in plasma in vitro led to the transfer of about 30% of the total protein radioactivity to the HD lipoproteins. The transfer mainly involved the peak-II (arginine-rich and/or apo A-I) and peak-III (apo C) proteins. There was also a small transfer of radioactivity (about 5% of the total) to the LD lipoproteins. 4. Injection of the liver VLD lipoproteins into the circulation of the supradiaphragmatic rat resulted in the transfer of about 15% of the total VLD-lipoprotein radioactivity to the LD lipoproteins. The transfer involved mainly the peak-I (apo B) proteins and accounted for about 20% of the total apo B protein radioactivity of the injected VLD lipoproteins. When the endogenous plasma VLD lipoprotein was taken into account the transfer of apo B protein was about 35%. 5. The transfer of peak-II protein radioactivity from the VLD to the HD lipoproteins was greater in the plasma of the supradiaphragmatic rat than in the incubated plasma suggesting that there was a net transfer of peak-II apoproteins during the VLD lipoprotein degradation. The transfer of peak-III protein radioactivity was not greater in the plasma of the supradiaphragmatic rat, but there was a loss of this radioactivity from the circulation.


2016 ◽  
Vol 62 (4) ◽  
pp. 391-402 ◽  
Author(s):  
V.N. Sukhorukov ◽  
V.P. Karagodin ◽  
A.N. Orekhov

One of the first manifestations of atherosclerosis is accumulation of extra- and intracellular cholesterol esters in the arterial intima. Formation of foam cells is considered as a trigger in the pathogenesis of atherosclerosis. Low density lipoprotein (LDL) circulating in human blood is the source of lipids accumulated in the arterial walls. This review considered features and role in atherogenesis different modified forms of LDL: oxidized, small dense, electronegative and especially desialylated LDL. Desialylated LDL of human blood plasma is capable to induce lipid accumulation in cultured cells and it is atherogenic. LDL possesses numerous alterations of protein, carbohydrate and lipid moieties and therefore can be termed multiple-modified LDL. Multiple modification of LDL occurs in human blood plasma and represents a cascade of successive changes in the lipoprotein particle: desialylation, loss of lipids, reduction in the particle size, increase of surface electronegative charge, etc. In addition to intracellular lipid accumulation, stimulatory effects of naturally occurring multiple-modified LDL on other processes involved in the development of atherosclerotic lesions, namely cell proliferation and fibrosis, were shown.


2019 ◽  
Vol 39 (10) ◽  
pp. 1902-1910 ◽  
Author(s):  
Emma J. Akers ◽  
Stephen J. Nicholls ◽  
Belinda A. Di Bartolo

Vascular calcification (VC) is strongly associated with all-cause mortality and is an independent predictor of cardiovascular events. Resulting from its complex, multifaceted nature, targeted treatments for VC have not yet been developed. Lipoproteins are well characterized in the pathogenesis of atherosclerotic plaques, leading to the development of plaque regressing therapeutics. Although their roles in plaque progression are well documented, their roles in VC, and calcification of a plaque, are not well understood. In this review, early in vitro data and clinical correlations suggest an inhibitory role for HDL (high-density lipoproteins) in VC, a stimulatory role for LDL (low-density lipoprotein) and VLDL (very low-density lipoprotein) and a potentially causal role for Lp(a) (lipoprotein [a]). Additionally, after treatment with a statin or PCSK9 (proprotein convertase subtilisin/kexin type 9) inhibitor, plaque calcification is observed to increase. With the notion that differing morphologies of plaque calcification associate with either a more stable or unstable plaque phenotype, uncovering the mechanisms of lipoprotein-artery wall interactions could produce targeted therapeutic options for VC.


Cells ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 583 ◽  
Author(s):  
Núria Puig ◽  
Lara Montolio ◽  
Pol Camps-Renom ◽  
Laia Navarra ◽  
Francesc Jiménez-Altayó ◽  
...  

Electronegative low-density lipoprotein (LDL) (LDL(−)), a modified LDL that is present in blood and exerts atherogenic effects on endothelial cells and monocytes. This study aimed to determine the action of LDL(−) on monocytes differentiated into macrophages. LDL(−) and in vitro-modified LDLs (oxidized, aggregated, and acetylated) were added to macrophages derived from THP1 monocytes over-expressing CD14 (THP1-CD14). Then, cytokine release, cell differentiation, lipid accumulation, and gene expression were measured by ELISA, flow cytometry, thin-layer chromatography, and real-time PCR, respectively. LDL(−) induced more cytokine release in THP1-CD14 macrophages than other modified LDLs. LDL(−) also promoted morphological changes ascribed to differentiated macrophages. The addition of high-density lipoprotein (HDL) and anti-TLR4 counteracted these effects. LDL(−) was highly internalized by macrophages, and it was the major inductor of intracellular lipid accumulation in triglyceride-enriched lipid droplets. In contrast to inflammation, the addition of anti-TLR4 had no effect on lipid accumulation, thus suggesting an uptake pathway alternative to TLR4. In this regard, LDL(−) upregulated the expression of the scavenger receptors CD36 and LOX-1, as well as several genes involved in triglyceride (TG) accumulation. The importance and novelty of the current study is that LDL(−), a physiologically modified LDL, exerted atherogenic effects in macrophages by promoting differentiation, inflammation, and triglyceride-enriched lipid droplets formation in THP1-CD14 macrophages, probably through different receptors.


Sign in / Sign up

Export Citation Format

Share Document