scholarly journals LncRNA SAMMSON negatively regulates miR-9-3p in hepatocellular carcinoma cells and has prognostic values

2019 ◽  
Vol 39 (7) ◽  
Author(s):  
Shouzhang Yang ◽  
Huajie Cai ◽  
Bingren Hu ◽  
Jinfu Tu

Abstract In the present study, we investigated the role of lncRNA SAMMSON in hepatocellular carcinoma (HCC). We found that SAMMSON was up-regulated in HCC tissues, and patients with high levels of SAMMSON in HCC tissues had significantly lower overall rate within 5 years after admission. miR-9-3p was down-regulated in HCC tissues and inversely correlated with SAMMSON. SAMMSON expression was not significantly affected by HBV and HCV infections in HCC patients. In HCC cells, SAMMSON overexpression resulted in down-regulated miR-9-3p expression, while miR-9-3p overexpression caused no significant changes in expression levels of SAMMSON. SAMMSON overexpression led to increased, while miR-9-3p overexpression resulted in decreased migration and invasion rates of HCC cells. Therefore, SAMMSON negatively regulated miR-9-3p in HCC cells to promote cancer cell migration and invasion.

2004 ◽  
Vol 10 (24) ◽  
pp. 8743-8750 ◽  
Author(s):  
Shailesh Singh ◽  
Udai P. Singh ◽  
Jonathan K. Stiles ◽  
William E. Grizzle ◽  
James W. Lillard

2020 ◽  
Vol 21 (11) ◽  
pp. 4044 ◽  
Author(s):  
Lobna Elkhadragy ◽  
Hadel Alsaran ◽  
Weiwen Long

Extracellular signal-regulated kinase 3 (ERK3) is an atypical member of the mitogen-activated protein kinase (MAPK) family. It harbors a kinase domain in the N-terminus and a long C-terminus extension. The C-terminus extension comprises a conserved in ERK3 and ERK4 (C34) region and a unique C-terminus tail, which was shown to be required for the interaction of ERK3 with the cytoskeletal protein septin 7. Recent studies have elucidated the role of ERK3 signaling in promoting the motility and invasiveness of cancer cells. However, little is known about the intramolecular regulation of the enzymatic activity and cellular functions of ERK3. In this study, we investigated the role of the elongated C-terminus extension in regulating ERK3 kinase activity and its ability to promote cancer cell migration and invasion. Our study revealed that the deletion of the C-terminus tail greatly diminishes the ability of ERK3 to promote the migration and invasion of lung cancer cells. We identified two molecular mechanisms underlying this effect. Firstly, the deletion of the C-terminus tail decreases the kinase activity of ERK3 towards substrates, including the oncogenic protein steroid receptor co-activator 3 (SRC-3), an important downstream target for ERK3 signaling in cancer. Secondly, in line with the previous finding that the C-terminus tail mediates the interaction of ERK3 with septin 7, we found that the depletion of septin 7 abolished the ability of ERK3 to promote migration, indicating that septin 7 acts as a downstream effector for ERK3-induced cancer cell migration. Taken together, the findings of this study advance our understanding of the molecular regulation of ERK3 signaling by unraveling the role of the C-terminus tail in regulating ERK3 kinase activity and functions in cancer cells. These findings provide useful insights for the development of therapeutic agents targeting ERK3 signaling in cancer.


2020 ◽  
Vol 2020 ◽  
pp. 1-6
Author(s):  
Kai Chen ◽  
Zhuqing Zhang ◽  
Aijun Yu ◽  
Jian Li ◽  
Jinlong Liu ◽  
...  

Objective. DLGAP1-AS2 has been characterized as an oncogenic lncRNA in glioma. Our preliminary microarray analysis revealed the altered expression of DLGAP1-AS2 in hepatocellular carcinoma (HCC), but the role of DLGAP1-AS2 in HCC remains unknown. Method. Expression of DLGAP1-AS2 and miR-154-5p in paired HCC and nontumor tissues from 62 HCC patients was determined by RT-qPCR. The 62 HCC patients were followed up for 5 years to analyze the prognostic value of DLGAP1-AS2 for HCC. DLGAP1-AS2 knockdown and miR-154-5p overexpression was achieved in HCC cells to study the relationship between them. Methylation of miR-154-5p was analyzed by methylation-specific PCR. Cell proliferation was analyzed by CCK-8 assay. Results. DLGAP1-AS2 was upregulated in HCC and predicted poor survival. miR-154-5p was downregulated in HCC and inversely correlated with DLGAP1-AS2. In HCC cells, DLGAP1-AS2 knockdown resulted in the upregulation of miR-154-5p expression and decreased methylation of miR-154-5p gene. Transwell assay showed that DLGAP1-AS2 knockdown and miR-154-5p overexpression inhibited cell invasion and migration, and the combination of LGAP1-AS2 knockdown and miR-154-5p overexpression showed stronger effects. Conclusion. DLGAP1-AS2 knockdown may inhibit HCC cell migration and invasion by regulating miR-154-5p methylation.


Sign in / Sign up

Export Citation Format

Share Document