scholarly journals Wnt10b promotes hair follicles growth and dermal papilla cells proliferation via Wnt/β-Catenin signaling pathway in Rex rabbits

2020 ◽  
Vol 40 (2) ◽  
Author(s):  
Zhenyu Wu ◽  
Yanli Zhu ◽  
Hongli Liu ◽  
Gongyan Liu ◽  
Fuchang Li

Abstract Wnt signaling plays an important role in the growth and development of hair follicles (HFs). Among the signaling molecules, Wnt10b was shown to promote the differentiation of primary skin epithelial cells toward the hair shaft and inner root sheath of the HF cells in mice in vitro. Whisker HFs were isolated from Rex rabbits and cultured in vitro to measure hair shaft growth. Meanwhile, dermal papilla cells (DPCs) were isolated and cultured in vitro. Treatment with AdWnt10b or the Wnt/β-Catenin Pathway inhibitor, XAV939, assessed the DPCs proliferation by CCK-8 assay. And the cell cycle was also analyzed by flow cytometry. We found that Wnt10b could promote elongation of the hair shaft, whereas XAV-939 treatment could eliminated this phenomenon. AdWnt10b treatment promoted the proliferation and induced G1/S transition of DPCs. AdWnt10b stimulation up-regulated β-Catenin protein in DPCs. Inhibition of Wnt/β-Catenin signaling by XAV-939 could decreased the basal and Wnt10b-enhanced proliferation of DPCs. And could also suppress the cell cycle progression in DPCs. In summary, our study demonstrates that Wnt10b could promote HFs growth and proliferation of DPCs via the Wnt/β-Catenin signaling pathway in Rex rabbits.

1991 ◽  
Vol 99 (3) ◽  
pp. 627-636 ◽  
Author(s):  
C.A. Jahoda ◽  
A.J. Reynolds ◽  
C. Chaponnier ◽  
J.C. Forester ◽  
G. Gabbiani

We have examined the expression of smooth muscle alpha-actin in hair follicles in situ, and in hair follicle dermal cells in culture by means of immunohistochemistry. Smooth muscle alpha-actin was present in the dermal sheath component of rat vibrissa, rat pelage and human follicles. Dermal papilla cells within all types of follicles did not express the antigen. However, in culture a large percentage of both hair dermal papilla and dermal sheath cells were stained by this antibody. The same cells were negative when tested with an antibody to desmin. Overall, explant-derived skin fibroblasts had relatively low numbers of positively marked cells, but those from skin regions of high hair-follicle density displayed more smooth muscle alpha-actin expression than fibroblasts from areas with fewer follicles. 2-D SDS-PAGE confirmed that, unlike fibroblasts, cultured papilla cells contained significant quantities of the alpha-actin isoform. The rapid switching on of smooth muscle alpha-actin expression by dermal papilla cells in early culture, contrasts with the behaviour of smooth muscle cells in vitro, and has implications for control of expression of the antigen in normal adult systems. The very high percentage of positively marked cultured papilla and sheath cells also provides a novel marker of cells from follicle dermis, and reinforces the idea that they represent a specialized cell population, contributing to the heterogeneity of fibroblast cell types in the skin dermis, and possibly acting as a source of myofibroblasts during wound healing.


Development ◽  
1992 ◽  
Vol 114 (2) ◽  
pp. 389-393 ◽  
Author(s):  
E. Kam ◽  
M.B. Hodgins

Observations on hair follicles presented in this paper show that boundaries to junctional communication are formed between groups of cells following different pathways of differentiation. The patterns of junctional communication in the bulbs of rat vibrissa follicles and human hair follicles were studied by microinjection of the fluorescent tracer dye Lucifer Yellow CH. Dye spread was extensive between undifferentiated cells of the hair bulb matrix but communication boundaries were found between groups of morphologically distinct cells. For example, boundaries to dye spread were observed between undifferentiated matrix cells and cells in the early stage of differentiation into the inner root sheath, between Huxley's and Henle's layers in the early inner root sheath and between cells of the cuticle and cortex of the hair. Dye did not spread between epithelial cells of the hair bulb and mesenchymal cells of the connective tissue sheath or dermal papilla. The patterns of dye spread became more complex (increased boundary formation and subcompartmentation) as differentiation progressed in higher regions of the hair bulb. The observed communication can be related to previous ultrastructural studies by others on the distribution of gap junctions in the wool follicle. These results show that junctional communication, with its consequent intercellular spread of small ions and molecules, is associated with uniformity of expression and behaviour within cell populations and that interruption of communication through the formation of boundaries and communication compartments is temporally and spatially related to the production of subpopulations of cells committed to the expression of different phenotypes.


2020 ◽  
Vol 21 (16) ◽  
pp. 5672
Author(s):  
Kyung-Eun Ku ◽  
Nahyun Choi ◽  
Jong-Hyuk Sung

Rab27a/b are known to play an important role in the transport of melanosomes, with their knockout causing silvery gray hair. However, the relationship between Rab27a/b and hair growth is not well known. To evaluate the role of Rab27a/b in hair cycle, we investigated the expression of Rab27a/b during hair cycling and human outer root sheath (hORS) cells. The expression of Rab27a in ORS cells was mainly detected at the anagen, whereas expression of Rab27b in ORS, and epidermal cells was strongly expressed at the telogen. Additionally, Rab27a/b were expressed in the Golgi of hORS cells. To evaluate the role of Rab27a/b in hair growth, telogen-to-anagen transition animal and vibrissae hair follicles (HFs) organ culture models were assayed using Rab27a/b siRNAs. The knockdown of Rab27a or Rab27b suppressed or promoted hair growth, respectively. These results were also confirmed in human dermal papilla cells (hDPCs) and hORS cells, showing the opposite mitogenic effects. Moreover, Rab27b knockdown increased the expression levels of various growth factors in the hDPCs and hORS cells. Overall, the opposite temporal expression patterns during hair cycling and roles for hair growth of Rab27a/b suggested that Rab27a/b might regulate the hair cycle. Therefore, our study may provide a novel solution for the development of hair loss treatment by regulating Rab27a/b levels.


2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Eun Young Lee ◽  
You Jin Nam ◽  
Sangjin Kang ◽  
Eun Ju Choi ◽  
Inbo Han ◽  
...  

Abstract Background Stress is an important cause of skin disease, including hair loss. The hormonal response to stress is due to the HPA axis, which comprises hormones such as corticotropin releasing factor (CRF), adrenocorticotropic hormone (ACTH), and cortisol. Many reports have shown that CRF, a crucial stress hormone, inhibits hair growth and induces hair loss. However, the underlying mechanisms are still unclear. The aim of this study was to examine the effect of CRF on human dermal papilla cells (DPCs) as well as hair follicles and to investigate whether the HPA axis was established in cultured human DPCs. Results CRF inhibited hair shaft elongation and induced early catagen transition in human hair follicles. Hair follicle cells, both human DPCs and human ORSCs, expressed CRF and its receptors and responded to CRF. CRF inhibited the proliferation of human DPCs through cell cycle arrest at G2/M phase and induced the accumulation of reactive oxygen species (ROS). Anagen-related cytokine levels were downregulated in CRF-treated human DPCs. Interestingly, increases in proopiomelanocortin (POMC), ACTH, and cortisol were induced by CRF in human DPCs, and antagonists for the CRF receptor blocked the effects of this hormone. Conclusion The results of this study showed that stress can cause hair loss by acting through stress hormones. Additionally, these results suggested that a fully functional HPA axis exists in human DPCs and that CRF directly affects human DPCs as well as human hair follicles under stress conditions.


2007 ◽  
Vol 177 (3) ◽  
pp. 501-513 ◽  
Author(s):  
Katrin Lorenz ◽  
Carsten Grashoff ◽  
Robert Torka ◽  
Takao Sakai ◽  
Lutz Langbein ◽  
...  

Integrin-linked kinase (ILK) links integrins to the actin cytoskeleton and is believed to phosphorylate several target proteins. We report that a keratinocyte-restricted deletion of the ILK gene leads to epidermal defects and hair loss. ILK-deficient epidermal keratinocytes exhibited a pronounced integrin-mediated adhesion defect leading to epidermal detachment and blister formation, disruption of the epidermal–dermal basement membrane, and the translocation of proliferating, integrin-expressing keratinocytes to suprabasal epidermal cell layers. The mutant hair follicles were capable of producing hair shaft and inner root sheath cells and contained stem cells and generated proliferating progenitor cells, which were impaired in their downward migration and hence accumulated in the outer root sheath and failed to replenish the hair matrix. In vitro studies with primary ILK-deficient keratinocytes attributed the migration defect to a reduced migration velocity and an impaired stabilization of the leading-edge lamellipodia, which compromised directional and persistent migration. We conclude that ILK plays important roles for epidermis and hair follicle morphogenesis by modulating integrin-mediated adhesion, actin reorganization, and plasma membrane dynamics in keratinocytes.


2020 ◽  
Author(s):  
Eun Young Lee ◽  
You Jin Nam ◽  
Sangjin Kang ◽  
Eun Ju Choi ◽  
Inbo Han ◽  
...  

Abstract Background: Stress is an important cause of skin disease, including hair loss. The hormonal response to stress is due to the HPA axis, which comprises hormones such as corticotropin releasing factor (CRF) , adrenocorticotropic hormone (ACTH) , and cortisol. Many reports have shown that CRF, a crucial stress hormone, inhibits hair growth and induces hair loss. However, the underlying mechanisms are still unclear. The aim of this study was to examine the effect of CRF on human dermal papilla cells (DPCs) as well as hair follicles and to investigate whether the HPA axis was established in cultured human DPCs.Results: CRF inhibited hair shaft elongation and induced early catagen transition in human hair follicles. Hair follicle cells, both human DPCs and human ORSCs, expressed CRF and its receptors and responded to CRF. CRF inhibited the proliferation of human DPCs through cell cycle arrest at G2/M phase and induced the accumulation of reactive oxygen species (ROS) . Anagen-related cytokine levels were downregulated in CRF-treated human DPCs. Interestingly, increases in proopiomelanocortin (POMC) , ACTH, and cortisol were induced by CRF in human DPCs, and antagonists for the CRF receptor blocked the effects of this hormone. Conclusion: The results of this study showed that stress can cause hair loss by acting through stress hormones. Additionally, these results suggested that a fully functional HPA axis exists in human DPCs and that CRF directly affects human DPCs as well as human hair follicles under stress conditions.


2020 ◽  
Vol 21 (12) ◽  
pp. 4553
Author(s):  
Sung Min Kim ◽  
Jung-Il Kang ◽  
Hoon-Seok Yoon ◽  
Youn Kyung Choi ◽  
Ji Soo Go ◽  
...  

The hair follicle goes through repetitive cycles including anagen, catagen, and telogen. The interaction of dermal papilla cells (DPCs) and keratinocytes regulates the hair cycle and hair growth. Humanin was discovered in the surviving brain cells of patients with Alzheimer’s disease. HNG, a humanin analogue, activates cell growth, proliferation, and cell cycle progression, and it protects cells from apoptosis. This study was performed to investigate the promoting effect and action mechanisms of HNG on hair growth. HNG significantly increased DPC proliferation. HNG significantly increased hair shaft elongation in vibrissa hair follicle organ culture. In vivo experiment showed that HNG prolonged anagen duration and inhibited hair follicle cell apoptosis, indicating that HNG inhibited the transition from the anagen to catagen phase mice. Furthermore, HNG activated extracellular signal-regulated kinase (Erk)1/2, Akt, and signal transducer and activator of transcription (Stat3) within minutes and up-regulated vascular endothelial growth factor (VEGF) levels on DPCs. This means that HNG could induce the anagen phase longer by up-regulating VEGF, which is a Stat3 target gene and one of the anagen maintenance factors. HNG stimulated the anagen phase longer with VEGF up-regulation, and it prevented apoptosis by activating Erk1/2, Akt, and Stat3 signaling.


Sign in / Sign up

Export Citation Format

Share Document