scholarly journals Clinical significance and biological functions of chemokine CXCL3 in head and neck squamous cell carcinoma

2021 ◽  
Author(s):  
Jian Guan ◽  
Jinru Weng ◽  
Qiaosheng Ren ◽  
Chunbin Zhang ◽  
Liantao Hu ◽  
...  

CXCL3 plays extensive roles in tumorigenesis in various types of human cancers through its roles in tumor cell differentiation, invasion, and migration. However, the mechanisms of CXCL3 in head and neck squamous cell carcinoma (HNSCC) remains unclear. In our study, multiple databases were used to explore the expression level, prognostic value, and related mechanisms of CXCL3 in human HNSCC through bioinformatic methods. We also performed further experiments in vivo and in vitro to evaluate the expression of CXCL3 in a human head and neck tissue microarray and the underlying effect mechanisms of CXCL3 on the tumor biology of HNSCC tumor cells. The result showed that the expression level of CXCL3 in patients with HNSCC was significantly higher as compared with that in normal tissues (p<0.05). Kaplan-Meier survival analysis demonstrated that patients with high CXCL3 expression had a lower overall survival rate (p=0.038). CXCL3 was further identified as an independent prognostic factor for HNSCC patients by Cox regression analysis, and GSEA exhibited that several signaling pathways including Apoptosis, Toll-like receptor, Nod-like receptor, Jak-STAT, and MAPK signaling pathways may be involved in the tumorigenesis of HNSCC. CAL27 cells overexpressing or HNSCC cells treated with exogenous CXCL3 exhibited enhanced cell malignant behaviors, whereas downregulating CXCL3 expression resulted in decreased malignant behaviors in HSC4 cells. In addition, CXCL3 may affect the expression of several genes, including ERK1/2, Bcl-2, Bax, STAT3, and NF-κB. In summary, our bioinformatics and experiment findings effectively suggest the information of CXCL3 expression, roles, and the potential regulatory network in HNSCC.

2020 ◽  
Vol 19 ◽  
pp. 153303382098011
Author(s):  
Ziyan Zhou ◽  
Chang Liu ◽  
Kang Liu ◽  
Meixin Lv ◽  
Baibei Li ◽  
...  

Head and neck squamous cell carcinoma (HNSCC) is the sixth most prevalent malignancy worldwide, with high incidence and poor survival rates. Increased expression of microRNA-205-5p (miR-205-5p) may influence the outcomes of HNSCC, but the identities of miR-205-5p target genes and the potential signaling pathways related to HNSCC remain unclear. RT-qPCR was used to detect the expression levels of miR-205-5p in the plasma of patients with HNSCC. We also performed a meta-analysis using data from relevant literature, and the Gene Expression Omnibus (GEO) and the Cancer Genome Atlas (TCGA) databases to evaluate the expression level of miR-205-5p in HNSCC. Next, we predicted the potential miR-205-5p target genes in HNSCC. We also used Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) for enrichment analyses adapted to investigate the dynamics and possible mechanisms of miR-205-5p in HNSCC. Lastly, we predicted the potential miR-205-5p target genes by evaluating their expression level and using Spearman analysis. Expression of miR-205-5p was higher in HNSCC tissues compared to normal unafflicted tissue samples (P < 0.05), and the corresponding summary receiver operating characteristic (sROC) was 0.82.The pooled sensitivity, specificity, PLR, NLR, and DOR values were 0.78 (95% CI: 0.75-0.81), 0.67 (95% CI: 0.60-0.73), 2.34 (95% CI: 1.45-3.76), 0.34 (95% CI: 0.19-0.60), and 8.16 (95% CI: 4.01-16.64), respectively. Based on GO and KEGG analyses, we found that miR-205-5p was correlated with the progression of HNSCC through association with signaling pathways, including the drug metabolism-cytochrome P450 pathway. Analysis of the target genes revealed that flavin-containing monooxygenase isoform 2 (FMO2) and alcohol dehydrogenase 1B (ADH1B) may be important targets of miR-205-5p. In summary, miR-205-5p may have a significant role in the prognosis of HNSCC and may serve as a potential biomarker in HNSCC.


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Aneesha Radhakrishnan ◽  
Vishalakshi Nanjappa ◽  
Remya Raja ◽  
Gajanan Sathe ◽  
Vinuth N. Puttamallesh ◽  
...  

Abstract Despite advances in clinical management, 5-year survival rate in patients with late-stage head and neck squamous cell carcinoma (HNSCC) has not improved significantly over the past decade. Targeted therapies have emerged as one of the most promising approaches to treat several malignancies. Though tyrosine phosphorylation accounts for a minority of total phosphorylation, it is critical for activation of signaling pathways and plays a significant role in driving cancers. To identify activated tyrosine kinase signaling pathways in HNSCC, we compared the phosphotyrosine profiles of a panel of HNSCC cell lines to a normal oral keratinocyte cell line. Dual-specificity tyrosine-(Y)-phosphorylation regulated kinase 1A (DYRK1A) was one of the kinases hyperphosphorylated at Tyr-321 in all HNSCC cell lines. Inhibition of DYRK1A resulted in an increased apoptosis and decrease in invasion and colony formation ability of HNSCC cell lines. Further, administration of the small molecular inhibitor against DYRK1A in mice bearing HNSCC xenograft tumors induced regression of tumor growth. Immunohistochemical labeling of DYRK1A in primary tumor tissues using tissue microarrays revealed strong to moderate staining of DYRK1A in 97.5% (39/40) of HNSCC tissues analyzed. Taken together our results suggest that DYRK1A could be a novel therapeutic target in HNSCC.


2013 ◽  
Vol 30 (1) ◽  
pp. 334-340 ◽  
Author(s):  
THAIS GULIM DE CARVALHO ◽  
ANA CAROLINA DE CARVALHO ◽  
DANIELLE CALHEIROS CAMPELO MAIA ◽  
JULIANA KAORI OGAWA ◽  
ANDRE LOPES CARVALHO ◽  
...  

2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A22-A22
Author(s):  
Charles Abbott ◽  
Nikita Bedi ◽  
Jing Wang ◽  
Josette Northcott ◽  
Rachel Pyke ◽  
...  

BackgroundTypical liquid biopsy panels offer a limited understanding of tumor biology, potentially under-representing the heterogeneity of resistance in late-stage cancers. Here, diminished scope can result in undetected, therapeutically-relevant biomarkers which respond dynamically to treatment, as well as potentially missed resistance mechanisms and pathway-level events. To address the challenges associated with identifying multiple concurrent heterogeneous resistance mechanisms in individual patients, we evaluated longitudinal exome-scale tumor-informed cell-free DNA (cfDNA) data from head and neck squamous cell carcinoma (HNSCC) patients receiving anti-PD1 therapy.MethodsPre- and post-intervention matched tumor, normal and plasma samples were retrospectively obtained from 15 stage II-IV HNSCC patients. Following baseline sample collection, all patients received a single dose of nivolumab or pembrolizumab. The primary tumor was then resected approximately one month later when possible, or a second biopsy collected where resection was impractical. Paired tumor and normal samples were then profiled using ImmunoID NeXT Platform®, an augmented exome/transcriptome platform and analysis pipeline. Exome-scale cfDNA profiling of matched plasma samples was performed using the NeXT Liquid BiopsyTM platform to detect somatic variants.ResultsPatient neoantigen presentation score (NEOPSTM) rapidly and significantly contracted following therapy (p=.00098). Novel neoantigens arising post-treatment which were predicted to be presented on lost HLA alleles were significantly higher in patients with longer overall survival (p=.019). Variant detection across same-patient serial cfDNA samples revealed significantly correlated VAFs (R=.62, p<.0001) despite significant contraction of mutational burden in solid tumor (p=.0039), suggesting complex clonal/subclonal dynamics. Investigation of the evolving tumor and cfDNA subclonal architecture revealed significant association between decreasing cellular prevalence and NOTCH signaling (q=.001) and the innate immune system (q=.002), while increasing cellular prevalence was associated with p53 signalling (q=.02) and hypoxia (q=.02). These findings were complimented by transcriptomic data which showed significant enrichment of multiple immune pathways across treatment.ConclusionsWe found that immune checkpoint blockade precipitates rapid evolution of the HNSCC tumor microenvironment. By leveraging comprehensive, tumor-informed liquid biopsy data we were able to identify contracting cellular populations enriched for NOTCH pathway mutations. Longer OS following either intervention was associated with an expansion of novel neoantigens predicted to be presented by lost HLA alleles. Our results suggest that tumor-informed liquid biopsy provides a more robust understanding of therapeutic response and resistance mechanisms than that attainable with typical liquid biopsy panels alone.Ethics ApprovalThis study obtained ethics approval from Human Subjects Research at Stanford University. ID number is 40425. All participants gave informed consent prior to enrollment.


Sign in / Sign up

Export Citation Format

Share Document