Protein folding and its links with human disease

2001 ◽  
Vol 68 ◽  
pp. 1-26 ◽  
Author(s):  
Alan Berry

The ability of proteins to fold to their functional states following synthesis in the intracellular environment is one of the most remarkable features of biology. Substantial progress has recently been made towards understanding the fundamental nature of the mechanism of the folding process. This understanding has been achieved through the development and concerted application of a variety of novel experimental and theoretical approaches to this complex problem. The emerging view of folding is that it is a stochastic process, but one biased by the fact that native-like interactions between residues are, on average, more stable than non-native ones. The sequences of natural proteins have emerged through evolutionary processes such that their unique native states can be found very efficiently even in the complex environment inside a living cell. But under some conditions proteins fail to fold correctly, or to remain correctly folded, in living systems, and this failure can result in a wide range of diseases. One group of diseases, known as amyloidoses, which includes Alzheimer's disease and the transmissible spongiform encephalopathies, involves deposition of aggregated proteins in a variety of tissues. These diseases are particularly intriguing because evidence is accumulating that the formation of the highly organized amyloid aggregates is a generic property of polypeptides, and not simply a feature of the few proteins associated with recognized pathological conditions. That such aggregates are not normally found in properly functional biological systems is again a testament to evolution, in this case of a variety of mechanisms inhibiting their formation. Understanding the nature of such protective mechanisms is a crucial step in the development of strategies to prevent and treat these debilitating diseases.

2001 ◽  
Vol 356 (1406) ◽  
pp. 133-145 ◽  
Author(s):  
Christopher M. Dobson

The ability of proteins to fold to their functional states following synthesis in the intracellular environment is one of the most remarkable features of biology. Substantial progress has recently been made towards understanding the fundamental nature of the mechanism of the folding process. This understanding has been achieved through the development and concerted application of a variety of novel experimental and theoretical approaches to this complex problem. The emerging view of folding is that it is a stochastic process, but one biased by the fact that native–like interactions between residues are on average more stable than non–native ones. The sequences of natural proteins have emerged through evolutionary processes such that their unique native states can be found very efficiently even in the complex environment inside a living cell. But under some conditions proteins fail to fold correctly, or to remain correctly folded, in living systems, and this failure can result in a wide range of diseases. One group of diseases, known as amyloidoses, which includes Alzheimer's and the transmissible spongiform encephalopathies, involves deposition of aggregated proteins in a variety of tissues. These diseases are particularly intriguing because evidence is accumulating that the formation of the highly organized amyloid aggregates is a generic property of polypeptides, and not simply a feature of the few proteins associated with recognized pathological conditions. That such aggregates are not normally found in properly functional biological systems is again a testament to evolution, in this case of a variety of mechanisms inhibiting their formation. Understanding the nature of such protective mechanisms is a crucial step in the development of strategies to prevent and treat these debilitating diseases.


2017 ◽  
Vol 114 (36) ◽  
pp. 9617-9622 ◽  
Author(s):  
Enrico Caldarulo ◽  
Alessandro Barducci ◽  
Kurt Wüthrich ◽  
Michele Parrinello

In transmissible spongiform encephalopathies (TSEs), which are lethal neurodegenerative diseases that affect humans and a wide range of other mammalian species, the normal “cellular” prion protein (PrPC) is transformed into amyloid aggregates representing the “scrapie form” of the protein (PrPSc). Continued research on this system is of keen interest, since new information on the physiological function of PrPC in healthy organisms is emerging, as well as new data on the mechanism of the transformation of PrPC to PrPSc. In this paper we used two different approaches: a combination of the well-tempered ensemble (WTE) and parallel tempering (PT) schemes and metadynamics (MetaD) to characterize the conformational free-energy surface of PrPC. The focus of the data analysis was on an 11-residue polypeptide segment in mouse PrPC(121–231) that includes the β2–α2 loop of residues 167–170, for which a correlation between structure and susceptibility to prion disease has previously been described. This study includes wild-type mouse PrPC and a variant with the single-residue replacement Y169A. The resulting detailed conformational landscapes complement in an integrative manner the available experimental data on PrPC, providing quantitative insights into the nature of the structural transition-related function of the β2–α2 loop.


2020 ◽  
Vol 21 (19) ◽  
pp. 7410
Author(s):  
Tomas Sneideris ◽  
Mantas Ziaunys ◽  
Brett K.-Y. Chu ◽  
Rita P.-Y. Chen ◽  
Vytautas Smirnovas

Prion protein amyloid aggregates are associated with infectious neurodegenerative diseases, known as transmissible spongiform encephalopathies. Self-replication of amyloid structures by refolding of native protein molecules is the probable mechanism of disease transmission. Amyloid fibril formation and self-replication can be affected by many different factors, including other amyloid proteins and peptides. Mouse prion protein fragments 107-143 (PrP(107-143)) and 89-230 (PrP(89-230)) can form amyloid fibrils. β-sheet core in PrP(89-230) amyloid fibrils is limited to residues ∼160–220 with unstructured N-terminus. We employed chemical kinetics tools, atomic force microscopy and Fourier-transform infrared spectroscopy, to investigate the effects of mouse prion protein fragment 107-143 fibrils on the aggregation of PrP(89-230). The data suggest that amyloid aggregates of a short prion-derived peptide are not able to seed PrP(89-230) aggregation; however, they accelerate the self-replication of PrP(89-230) amyloid fibrils. We conclude that PrP(107-143) fibrils could facilitate the self-replication of PrP(89-230) amyloid fibrils in several possible ways, and that this process deserves more attention as it may play an important role in amyloid propagation.


2015 ◽  
Vol 11 (7) ◽  
pp. 2008-2016 ◽  
Author(s):  
Paola Scano ◽  
Antonella Rosa ◽  
Alessandra Incani ◽  
Caterina Maestrale ◽  
Cinzia Santucciu ◽  
...  

While neurochemical metabolite modifications, determined by different techniques, have been diffusely reported in human and mice brains affected by transmissible spongiform encephalopathies (TSEs), this aspect has been little studied in the natural animal hosts with the same pathological conditions so far.


2020 ◽  
Author(s):  
Brittaney L. Buchanan ◽  
Robert M. Zink

AbstractWildlife managers are concerned with transmissible spongiform encephalopathies (TSEs) as they are currently incurable, always fatal, and have the potential to cross species boundaries. Although a wide range of mammals exhibit TSEs, it is currently unclear whether they are evolutionarily clustered or if TSE+ species are randomly distributed phylogenetically. We tested whether mammalian species with TSEs are phylogenetically underdispersed on a tree derived from 102 PRNP sequences obtained from the Orthologous Mammalian Markers database. We determined that the PRNP tree was topologically congruent with a species tree for these same 102 taxa constructed from 20 aligned gene sequences, excluding the PRNP sequence. Searches in Google Scholar were done to determine whether a species is known to have expressed a TSE. TSEs were present in a variety of orders excluding Chiroptera, Eulipotyphyla, and Lagomorpha and no marine mammals (Artiodactyla) were recorded to have a TSE. We calculated the phylogenetic signal of binary traits (D-Value) to infer if the phylogenetic distribution of TSEs are conserved or dispersed. The occurrence of TSEs in both trees is non-random (Species tree D-value = 0.291; PRNP tree D-value = 0.273), and appears to have arisen independently in the recent history of different mammalian groups. Our findings suggest that the evolution of TSEs develops in groups of species irrespective of PRNP genotype. The evolution of TSEs merits continued exploration at a more in-depth phylogenetic level, as well as the search for genetic combinations that might underlie TSE diseases.


2004 ◽  
Vol 71 ◽  
pp. 193-202 ◽  
Author(s):  
David R Brown

Prion diseases, also referred to as transmissible spongiform encephalopathies, are characterized by the deposition of an abnormal isoform of the prion protein in the brain. However, this aggregated, fibrillar, amyloid protein, termed PrPSc, is an altered conformer of a normal brain glycoprotein, PrPc. Understanding the nature of the normal cellular isoform of the prion protein is considered essential to understanding the conversion process that generates PrPSc. To this end much work has focused on elucidation of the normal function and activity of PrPc. Substantial evidence supports the notion that PrPc is a copper-binding protein. In conversion to the abnormal isoform, this Cu-binding activity is lost. Instead, there are some suggestions that the protein might bind other metals such as Mn or Zn. PrPc functions currently under investigation include the possibility that the protein is involved in signal transduction, cell adhesion, Cu transport and resistance to oxidative stress. Of these possibilities, only a role in Cu transport and its action as an antioxidant take into consideration PrPc's Cu-binding capacity. There are also more published data supporting these two functions. There is strong evidence that during the course of prion disease, there is a loss of function of the prion protein. This manifests as a change in metal balance in the brain and other organs and substantial oxidative damage throughout the brain. Thus prions and metals have become tightly linked in the quest to understand the nature of transmissible spongiform encephalopathies.


2021 ◽  
Vol 22 (9) ◽  
pp. 4617
Author(s):  
Styliana Kyriakoudi ◽  
Anthi Drousiotou ◽  
Petros P. Petrou

Mitochondria are dynamic organelles, the morphology of which is tightly linked to their functions. The interplay between the coordinated events of fusion and fission that are collectively described as mitochondrial dynamics regulates mitochondrial morphology and adjusts mitochondrial function. Over the last few years, accruing evidence established a connection between dysregulated mitochondrial dynamics and disease development and progression. Defects in key components of the machinery mediating mitochondrial fusion and fission have been linked to a wide range of pathological conditions, such as insulin resistance and obesity, neurodegenerative diseases and cancer. Here, we provide an update on the molecular mechanisms promoting mitochondrial fusion and fission in mammals and discuss the emerging association of disturbed mitochondrial dynamics with human disease.


Sign in / Sign up

Export Citation Format

Share Document