Defining the structure of the substrate-free state of the DnaK molecular chaperone

2001 ◽  
Vol 68 ◽  
pp. 69-82 ◽  
Author(s):  
Joanna F. Swain ◽  
Renuka Sivendran ◽  
Lila M. Gierasch

Members of the Hsp70 (heat-shock protein of 70 kDa) family of molecular chaperones bind to exposed hydrophobic stretches on substrate proteins in order to dissociate molecular complexes and prevent aggregation in the cell. Substrate affinity for the C-terminal domain of the Hsp70 is regulated by ATP binding to the N-terminal domain utilizing an allosteric mechanism. Our multi-dimensional NMR studies of a substrate-binding domain fragment (amino acids 387-552) from an Escherichia coli Hsp70, DnaK(387-552), have uncovered a pH-dependent conformational change, which we propose to be relevant for the full-length protein also. At pH 7, the C-terminus of DnaK(387-552) mimics substrate by binding to its own substrate-binding site, as has been observed previously for truncated Hsp70 constructs. At pH 5, the C-terminus is released from the binding site, such that DnaK is in the substrate-free state 10-20% of the time. We propose that the mechanism for the release of the tail is a loss of affinity for substrate at low pH. The pH-dependent fluorescence changes at a tryptophan residue near the substrate-binding pocket in full-length DnaK lead us to extend these conclusions to the full-length DnaK as well. In the context of the DnaK substrate-binding domain fragment, the release of the C-terminus from the substrate-binding site provides our first glimpse of the empty conformation of an Hsp70 substrate-binding domain containing a portion of the helical subdomain.

2021 ◽  
Author(s):  
Jun Weng ◽  
Xiaoming Zhou ◽  
Pattama Wiriyasermkul ◽  
Zhenning Ren ◽  
Xiuwen Yan ◽  
...  

Members of the nucleobase/ascorbic acid transporter (NAT) gene family are found in all kingdoms of life. In mammals, the concentrative uptake of ascorbic acid (vitamin C) by members of the NAT family is driven by the Na+ gradient, while the uptake of nucleobases in bacteria is powered by the H+ gradient. Here we report the structure and function PurTCp, a NAT family member from Colwellia psychrerythraea. The structure of PurTCp was determined to 2.80 Å resolution by X-ray crystallography. PurTCp forms a homodimer and each protomer has 14 transmembrane segments folded into a substrate-binding domain (core domain) and an interface domain (gate domain) A purine base is present in the structure and defines the location of the substrate binding site. Functional studies reveal that PurTCp transports purines but not pyrimidines, and that purine binding and transport is dependent on the pH. Mutation of a conserved aspartate residue close to the substrate binding site reveals the critical role of this residue in H+-dependent transport of purines. Comparison of the PurTCp structure with transporters of the same structural fold suggests that rigid-body motions of the substrate-binding domain are central for substrate translocation across the membrane.


2015 ◽  
Vol 112 (22) ◽  
pp. E2865-E2873 ◽  
Author(s):  
Anastasia Zhuravleva ◽  
Lila M. Gierasch

Binding of ATP to the N-terminal nucleotide-binding domain (NBD) of heat shock protein 70 (Hsp70) molecular chaperones reduces the affinity of their C-terminal substrate-binding domain (SBD) for unfolded protein substrates. ATP binding to the NBD leads to docking between NBD and βSBD and releasing of the α-helical lid that covers the substrate-binding cleft in the SBD. However, these structural changes alone do not fully account for the allosteric mechanism of modulation of substrate affinity and binding kinetics. Through a multipronged study of the Escherichia coli Hsp70 DnaK, we found that changes in conformational dynamics within the βSBD play a central role in interdomain allosteric communication in the Hsp70 DnaK. ATP-mediated NBD conformational changes favor formation of NBD contacts with lynchpin sites on the βSBD and force disengagement of SBD strand β8 from strand β7, which leads to repacking of a βSBD hydrophobic cluster and disruption of the hydrophobic arch over the substrate-binding cleft. In turn, these structural rearrangements drastically enhance conformational dynamics throughout the entire βSBD and particularly around the substrate-binding site. This negative, entropically driven allostery between two functional sites of the βSBD–the NBD binding interface and the substrate-binding site–confers upon the SBD the plasticity needed to bind to a wide range of chaperone clients without compromising precise control of thermodynamics and kinetics of chaperone–client interactions.


2018 ◽  
Author(s):  
Ana O. Tiroli-Cepeda ◽  
Thiago V. Seraphim ◽  
Júlio C. Borges ◽  
Carlos H. I. Ramos

AbstractDnaJ/Hsp40 chaperones deliver unfolded proteins and stimulate the ATPase activity of DnaK/Hsp70 via their J-domain, a crucial event for the function that this system has in assisting protein folding. The interaction between Hsp40 and Hsp70 is transient and thus difficult to study, since mixing the binding partners can lead to quick dissociation due to their low affinity, creating a challenge for detailed analysis. As a consequence, knowledge of many important aspects of the mechanism of interaction is still lacking, for instance, the effect that J-domain binding has on Hsp70. In this study, we investigated whether it would be possible to gain understanding of this interaction by engineering a chimeric polypeptide where the J-domain of Hsp40 was covalently attached to the substrate binding domain (SBD) of Hsp70 by a flexible linker. The rationale for this is that an increase in the proximity between the interacting partners in this engineered chimera will promote the natural interaction and facilitate the characterization of the protein– protein interaction, which is a requirement to gain further understanding of many biological processes. The resulting chimera, termed J-SBD, was properly folded and had properties not present in the SBD alone. J-SBD behaved primarily as a monomer in all conditions tested and exhibited chaperone activity, as shown by aggregation protection and substrate binding assays, which revealed decreased binding to bis-ANS, a probe for hydrophobic patches. Collectively, our results suggest that Hsp40 binding to Hsp70 via the J-domain shifts the Hsp70 equilibrium towards the monomer state to expose hydrophobic sites prone to substrate accommodation.AbbreviationsBis-ANS (4,4’-Dianilino-1,1’-Binaphthyl-5,5’-Disulfonic Acid; CD, circular dichroism; Hsp, heat shock protein; J-SBD, chimeric polypeptide in which the J-domain of Hsp40 (at the N-terminus) is covalently attached to the substrate binding domain of Hsp70 (at the C-terminus) by a flexible linker; SBD: substrate binding domain of Hsp70.


Biochemistry ◽  
2006 ◽  
Vol 45 (46) ◽  
pp. 13835-13846 ◽  
Author(s):  
Carolina A. Vega ◽  
Neşe Kurt ◽  
Zhongjing Chen ◽  
Stefan Rüdiger ◽  
Silvia Cavagnero

2004 ◽  
Vol 279 (19) ◽  
pp. 20529-20538 ◽  
Author(s):  
Paul C. F. Graf ◽  
Maria Martinez-Yamout ◽  
Stephen VanHaerents ◽  
Hauke Lilie ◽  
H. Jane Dyson ◽  
...  

The molecular chaperone Hsp33 inEscherichia coliresponds to oxidative stress conditions with the rapid activation of its chaperone function. On its activation pathway, Hsp33 progresses through three major conformations, starting as a reduced, zinc-bound inactive monomer, proceeding through an oxidized zinc-free monomer, and ending as a fully active oxidized dimer. While it is known that Hsp33 senses oxidative stress through its C-terminal four-cysteine zinc center, the nature of the conformational changes in Hsp33 that must take place to accommodate this activation process is largely unknown. To investigate these conformational rearrangements, we constructed constitutively monomeric Hsp33 variants as well as fragments consisting of the redox regulatory C-terminal domain of Hsp33. These proteins were studied by a combination of biochemical and NMR spectroscopic techniques. We found that in the reduced, monomeric conformation, zinc binding stabilizes the C terminus of Hsp33 in a highly compact, α-helical structure. This appears to conceal both the substrate-binding site as well as the dimerization interface. Zinc release without formation of the two native disulfide bonds causes the partial unfolding of the C terminus of Hsp33. This is sufficient to unmask the substrate-binding site, but not the dimerization interface, rendering reduced zinc-free Hsp33 partially active yet monomeric. Critical for the dimerization is disulfide bond formation, which causes the further unfolding of the C terminus of Hsp3 and allows the association of two oxidized Hsp33 monomers. This then leads to the formation of active Hsp33 dimers, which are capable of protecting cells against the severe consequences of oxidative heat stress.


2007 ◽  
Vol 374 (4) ◽  
pp. 1054-1064 ◽  
Author(s):  
Fernando Moro ◽  
Stefka G. Taneva ◽  
Adrián Velázquez-Campoy ◽  
Arturo Muga

1999 ◽  
Vol 181 (6) ◽  
pp. 1971-1974 ◽  
Author(s):  
Axel Mogk ◽  
Bernd Bukau ◽  
Rolf Lutz ◽  
Wolfgang Schumann

ABSTRACT The highly conserved DnaK chaperones consist of an N-terminal ATPase domain, a central substrate-binding domain, and a C-terminal domain whose function is not known. Since Bacillus subtilis dnaK was not able to complement an Escherichia coli dnaK null mutant, we performed domain element swap experiments to identify the regions responsible for this finding. It turned out that the B. subtilis DnaK protein needed approximately normal amounts of the cochaperone DnaJ to be functional in E. coli. The ATPase domain and the substrate-binding domain form a species-specific functional unit, while the C-terminal domains, although less conserved, are exchangeable. Deletion of the C-terminal domain in E. coli DnaK affected neither complementation of growth at high temperatures nor propagation of phage λ but abolished degradation of ς32.


Sign in / Sign up

Export Citation Format

Share Document