ENHANCED OXIDATIVE STRESS AND GENOMIC INSTABILITY IN THE PROGENY OF IRRADIATED HAEMOPOIETIC STEM CELLS

1996 ◽  
Vol 24 (4) ◽  
pp. 539S-539S ◽  
Author(s):  
SM Clutton ◽  
KMS Townsend ◽  
JD Ansell ◽  
EG Wright
Author(s):  
Deborah A. Bowler ◽  
Stephen R. Moore ◽  
Denise A. Macdonald ◽  
Sharon H. Smyth ◽  
Peter Clapham ◽  
...  

2003 ◽  
Vol 79 (1) ◽  
pp. 27-34 ◽  
Author(s):  
J. McIlrath ◽  
S. A. Lorimore ◽  
P. J. Coates ◽  
E. G. Wright

2003 ◽  
Vol 79 (1) ◽  
pp. 27-34 ◽  
Author(s):  
J. McIlrath ◽  
S. A. Lorimore ◽  
P. J. Coates ◽  
E. G. Wright

Author(s):  
Merve Erkisa ◽  
Nazlihan Aztopal ◽  
Elif Erturk ◽  
Engin Ulukaya ◽  
Veysel T. Yilmaz ◽  
...  

Background: Cancer stem cells (CSC) are subpopulation within the tumor that acts a part in the initiation, progression, recurrence, resistance to drugs and metastasis of cancer. It is well known that epigenetic changes lead to tumor formation in cancer stem cells and show drug resistance. Epigenetic modulators and /or their combination with different agents have been used in cancer therapy. Objective: In our study we scope out the effects of combination of a histone deacetylases inhibitor, valproic acid (VPA), and Cu(II) complex [Cu(barb-κN)(barb-κ2N,O)(phen-κN,N’)]·H2O] on cytotoxicity/apoptosis in a stem-cell enriched population (MCF-7s) obtained from parental breast cancer cell line (MCF-7). Methods: Viability of the cells was measured by the ATP assay. Apoptosis was elucidated via the assessment of caspase-cleaved cytokeratin 18 (M30 ELISA) and a group of flow cytometry analysis (caspase 3/7 activity, phosphatidylserine translocation by annexin V-FITC assay, DNA damage and oxidative stress) and 2ˈ,7ˈ–dichlorofluorescein diacetate staining. Results: The VPA combined with Cu(II) complex showed anti proliferative activity on MCF-7s cells in a dose- and time-dependently. Treatment with combination of 2.5 mM VPA and 3.12 μM Cu(II) complex induces oxidative stress in a time-dependent manner, as well as apoptosis that is evidenced by the increase in caspase 3/7 activity, positive annexin-V-FITC, and increase in M30 levels. Conclusion: The results suggest that the combination therapy induces apoptosis following increased oxidative stress, thereby making it a possible promising therapeutic strategy that further analysis is required.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tomonori Hara ◽  
Manabu Toyoshima ◽  
Yasuko Hisano ◽  
Shabeesh Balan ◽  
Yoshimi Iwayama ◽  
...  

AbstractCarbonyl stress, a specific form of oxidative stress, is reported to be involved in the pathophysiology of schizophrenia; however, little is known regarding the underlying mechanism. Here, we found that disruption of GLO1, the gene encoding a major catabolic enzyme scavenging the carbonyl group, increases vulnerability to external carbonyl stress, leading to abnormal phenotypes in human induced pluripotent stem cells (hiPSCs). The viability of GLO1 knockout (KO)-hiPSCs decreased and activity of caspase-3 was increased upon addition of methylglyoxal (MGO), a reactive carbonyl compound. In the GLO1 KO-hiPSC-derived neurons, MGO administration impaired neurite extension and cell migration. Further, accumulation of methylglyoxal-derived hydroimidazolone (MG-H1; a derivative of MGO)-modified proteins was detected in isolated mitochondria. Mitochondrial dysfunction, including diminished membrane potential and dampened respiratory function, was observed in the GLO1 KO-hiPSCs and derived neurons after addition of MGO and hence might be the mechanism underlying the effects of carbonyl stress. The susceptibility to MGO was partially rescued by the administration of pyridoxamine, a carbonyl scavenger. Our observations can be used for designing an intervention strategy for diseases, particularly those induced by enhanced carbonyl stress or oxidative stress.


2020 ◽  
Vol 79 (Suppl 1) ◽  
pp. 483.2-484
Author(s):  
L. Zaripova ◽  
A. Midgley ◽  
S. Christmas ◽  
E. Baildam ◽  
R. Oldershaw

Background:Juvenile idiopathic arthritis (JIA) is a well-known chronic rheumatic disease of childhood characterised by progressive joint destruction and severe systemic complications.Immune cells are known to trigger the pathophysiological cascade in JIA, but there is little information regarding the contribution made by Mesenchymal stem cells (MSCs). These cells are able to modulate the immune response and decrease the level of pro-inflammatory cytokines. With addition of regenerative property it makes MSCs potential candidates for clinical application as immunosuppressants in treatment of autoimmune diseases.Objectives:To investigate MSCs proliferation, viability and immunomodulatory function in JIA and healthy children.Methods:MSCs were separated from peripheral blood (PB) and synovial fluid (SF) of JIA patients and healthy controls. Cell proliferation rate was counted by Population doublings per day (PDD) during 9 days, in the last of which alamarBlue™ assays were performed to assess cell viability. Due to measure senescence MSCs were stained with SA-β-galactosidase. Immunofluorescence was used to examine the expression of p16, p21, p53. Oxidative stress was measured with DCFH-DA. Cell cycle analysis was evaluated with Propidium Iodide and analysed by Accuri® C6 Flow Cytometer.Commercially-available bone marrow mesenchymal stem cells (BM-MSCs) were treated with graded concentrations of pro-inflammatory cytokines (0.1-100 ng/ml) with following examination of cell viability. Mixed lymphocyte reactions (MLR) were performed to measure MSC immunomodulatory abilityin vitro.Results:The growth kinetics of JIA-MSCs were different from healthy controls. JIA-MSCs divided slowly and appeared disorganised with large cytoplasm and loads of outgrowth. They demonstrated a decrease in cell proliferation (negative PDD) and metabolic activity. Difference in growth kinetics and metabolic activity were found inside the JIA PB group with some evidence of response following biological treatment. Thus, PB-MSCs from patients treated with TNFi and anti-IL6 medications had notably higher cell proliferation and metabolic activity against JIA patients received other therapy. Considering this difference, it was hypothesised that cytokines obtained in a high amount in PB and SF of JIA patients may influence MSCs viability. To prove this BM-MSCs were treated with cytokines and demonstrated a dose-dependent decrease in metabolic activity significantly after TNFα and IL1, no significantly after treatment with IL6. Both BM-MSCs treated with cytokines and JIA-MSCs displayed high level of reactive oxygen species.Cell cycle analysis revealed that JIA-MSCs were arrested in G0/G1 phase with low number of mitotic cells. In addition, the number of senescence-associated SA-β-gal-positive cells was notably higher in JIA-MSCs. Furthermore, JIA-MSCs expressed high level of immunofluorescence for p16, p21 and p53 which played an important role in regulating the senescence progress of MSCs.Results of MLR showed the ability of BM-MSCs to decrease the percentage of activated T-helpers, T-suppressors, B-cells and natural killers proliferation, while JIA-MSCs lost this property.Conclusion:Taken together current research has demonstrated that under the influence of proinflammatory cytokines JIA-MSCs suffered from oxidative stress and disruption of metabolic activity acquire senescent morphology, shorten of telomere length, arrest in G0 phase of cell cycle and finally loss of immune regulation. We are continuing our research to determine the mechanisms that are responsible for the impaired phenotype with the aim of identifying new therapeutic strategies for the treatment of JIA.Disclosure of Interests: :None declared


Stem Cells ◽  
2009 ◽  
pp. N/A-N/A ◽  
Author(s):  
Xiaohong Wang ◽  
Tiemin Zhao ◽  
Wei Huang ◽  
Tao Wang ◽  
Jiang Qian ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document