Combination of Histone Deacetylase Inhibitor with Cu(II) 5,5- diethylbarbiturate Complex Induces Apoptosis in Breast Cancer Stem Cells: A Promising Novel Approach

Author(s):  
Merve Erkisa ◽  
Nazlihan Aztopal ◽  
Elif Erturk ◽  
Engin Ulukaya ◽  
Veysel T. Yilmaz ◽  
...  

Background: Cancer stem cells (CSC) are subpopulation within the tumor that acts a part in the initiation, progression, recurrence, resistance to drugs and metastasis of cancer. It is well known that epigenetic changes lead to tumor formation in cancer stem cells and show drug resistance. Epigenetic modulators and /or their combination with different agents have been used in cancer therapy. Objective: In our study we scope out the effects of combination of a histone deacetylases inhibitor, valproic acid (VPA), and Cu(II) complex [Cu(barb-κN)(barb-κ2N,O)(phen-κN,N’)]·H2O] on cytotoxicity/apoptosis in a stem-cell enriched population (MCF-7s) obtained from parental breast cancer cell line (MCF-7). Methods: Viability of the cells was measured by the ATP assay. Apoptosis was elucidated via the assessment of caspase-cleaved cytokeratin 18 (M30 ELISA) and a group of flow cytometry analysis (caspase 3/7 activity, phosphatidylserine translocation by annexin V-FITC assay, DNA damage and oxidative stress) and 2ˈ,7ˈ–dichlorofluorescein diacetate staining. Results: The VPA combined with Cu(II) complex showed anti proliferative activity on MCF-7s cells in a dose- and time-dependently. Treatment with combination of 2.5 mM VPA and 3.12 μM Cu(II) complex induces oxidative stress in a time-dependent manner, as well as apoptosis that is evidenced by the increase in caspase 3/7 activity, positive annexin-V-FITC, and increase in M30 levels. Conclusion: The results suggest that the combination therapy induces apoptosis following increased oxidative stress, thereby making it a possible promising therapeutic strategy that further analysis is required.

2018 ◽  
Vol 19 (12) ◽  
pp. 3813 ◽  
Author(s):  
Dong Kim ◽  
Je-Yoel Cho

Cancer stem cells (CSCs) exhibit self-renewal activity and give rise to other cell types in tumors. Due to the infinite proliferative potential of CSCs, drugs targeting these cells are necessary to completely inhibit cancer development. The β-lapachone (bL) compound is widely used to treat cancer development; however, its effect on cancer stem cells remain elusive. Thus, we investigated the effect of bL on mammosphere formation using breast-cancer stem-cell (BCSC) marker-positive cells, MDA-MB-231. MDA-MB-231 cells, which are negative for reduced nicotinamide adenine dinucleotide phosphate (NAD(P)H):quinone oxidoreductase (NQO1) expression, were constructed to stably express NQO1 (NQO1 stable cells). The effect of bL on these cells was evaluated by wound healing and Transwell cell-culture chambers, ALDEFLUOR assay, and mammosphere formation assay. Here, we show that bL inhibited the proliferative ability of mammospheres derived from BCSC marker-positive cells, MDA-MB-231, in an NQO1-dependent manner. The bL treatment efficiently downregulated the expression level of BCSC markers cluster of differentiation 44 (CD44), aldehyde dehydrogenase 1 family member A1 (ALDH1A1), and discs large (DLG)-associated protein 5 (DLGAP5) that was recently identified as a stem-cell proliferation marker in both cultured cells and mammosphered cells. Moreover, bL efficiently downregulated cell proliferation and migration activities. These results strongly suggest that bL could be a therapeutic agent for targeting breast-cancer stem-cells with proper NQO1 expression.


2015 ◽  
Vol 36 (1) ◽  
pp. 221-232 ◽  
Author(s):  
Mercedes Nadal-Serrano ◽  
Jorge Sastre-Serra ◽  
Adamo Valle ◽  
Pilar Roca ◽  
Jordi Oliver

Background/Aims: Large-scale epidemiological studies support a correlation between obesity and breast cancer in postmenopausal women. Circulating leptin levels are increased in obese and it has been suggested to play a significant role in mammary tumor formation and progression. Moreover, regulation of oxidative stress is another important factor in both tumor development and responses to anticancer therapies. The aim of this study was to examine the relationship between oxidative stress and chronic leptin exposure. Methods: We treated MCF-7 breast cancer cells with 100 ng/mL leptin for 10 days and analyzed cell growth, ROS production and oxidative damage, as well as, some of the main antioxidant systems. Furthermore, since the hyperleptinemia has been associated with a worse pathology prognosis, we decided to test the influence of leptin in response to cisplatin anticancer treatment. Results: Leptin signalling increased cell proliferation but reduced ROS production, as well as, oxidative damage. We observed an upregulation of SIRT1 after leptin exposure, a key regulator of stress response and metabolism. Additionally, leptin counteracted cisplatin-induced cytotoxicity in tumor cells, showing a decrease in cell death. Conclusion: Chronic leptin could contribute to the effective regulation of endogenous and treatment-induced oxidative stress, and it contributes to explain in part its proliferative effects.


2019 ◽  
Vol 514 (4) ◽  
pp. 1204-1209 ◽  
Author(s):  
Guangxian Zhong ◽  
Shenghui Qin ◽  
Danyelle Townsend ◽  
Bradley A. Schulte ◽  
Kenneth D. Tew ◽  
...  

Antioxidants ◽  
2019 ◽  
Vol 8 (12) ◽  
pp. 633 ◽  
Author(s):  
Ana Čipak Gašparović ◽  
Lidija Milković ◽  
Nadia Dandachi ◽  
Stefanie Stanzer ◽  
Iskra Pezdirc ◽  
...  

Oxidative stress plays a role in carcinogenesis, but it also contributes to the modulation of tumor cells and microenvironment caused by chemotherapeutics. One of the consequences of oxidative stress is lipid peroxidation, which can, through reactive aldehydes such as 4-hydroxy-2-nonenal (HNE), affect cell signaling pathways. On the other hand, cancer stem cells (CSC) are now recognized as a major factor of malignancy by causing metastasis, relapse, and therapy resistance. Here, we evaluated whether oxidative stress and HNE modulation of the microenvironment can influence CSC growth, modifications of the epithelial to mesenchymal transition (EMT) markers, the antioxidant system, and the frequency of breast cancer stem cells (BCSC). Our results showed that oxidative changes in the microenvironment of BCSC and particularly chronic oxidative stress caused changes in the proliferation and growth of breast cancer cells. In addition, changes associated with EMT, increase in glutathione (GSH) and Nuclear factor erythroid 2-related factor 2 (NRF2) were observed in breast cancer cells grown on HNE pretreated collagen and under chronic oxidative stress. Our results suggest that chronic oxidative stress can be a bidirectional modulator of BCSC fate. Low levels of HNE can increase differentiation markers in BCSC, while higher levels increased GSH and NRF2 as well as certain EMT markers, thereby increasing therapy resistance.


2020 ◽  
pp. 1-11
Author(s):  
Varuni Colamba Pathiranage ◽  
Jesiska Nirmalee Lowe ◽  
Umapriyatharshini Rajagopalan ◽  
Meran Keshawa Ediriweera ◽  
Kanishka Senathilake ◽  
...  

2019 ◽  
Vol 39 (1) ◽  
Author(s):  
Majid Asadi-Samani ◽  
Mahmoud Rafieian-Kopaei ◽  
Zahra Lorigooini ◽  
Hedayatollah Shirzad

Abstract Some medicinal herbs and compounds are known to target cancer cells, but the success of them as anticancer compounds depends to a large extent on their ability to activate pathways that kill cancer cells by arresting cell cycle and inducing apoptosis. The aim of the present study was to determine the anticancer effects of Euphorbia szovitsii Fisch. & C.A.Mey. on the breast cancer cells to reveal the underlying mechanism of its anti-breast cancer properties. In this experimental study, triple negative breast cancer cell line (MDA-MB-231) was cultivated in RPMI-1640 medium. Hydroalcoholic extract (70:30) of aerial parts of the plant was prepared. The cultured cells were treated with different concentrations (0–1000 μg/ml) of E. szovitsii extract for 24 and 48 h. Toxicity of the extract on MDA-MB-231 cells was examined using MTT (3-[4,5-dimethyl-2-thiazolyl]-2, 5 diphenyl tetrazolium bromide) test. The Annexin V–FITC Apoptosis Detection Kit was used to evaluate apoptosis and necrosis. Flow cytometry technique was employed to differentiate different phases of the cell cycle in the cells. Data were analyzed by GraphPad Prism and SPSS software. After 24 and 48 h, the IC50 values were respectively 76.78 (95% CI = 60.75–97.05; R = 0.8588) and 59.71 (95% CI = 46.25–77.09; R = 0.8543) μg/ml for E. szovitsii. The extract exhibited antiproliferative effects against MDA-MB-231 cells in a dose-dependent manner. Annexin V-FITC/PI assay confirmed that the extract was able to induce apoptosis in MDA-MB-231 cells. Moreover, treatment with the extract resulted in cell cycle arrest at G1 phase. Therefore, E. szovitsii could induce apoptosis and cycle arrest in the MDA-MB-231 cell line. It might be a good resource of natural products for producing anti-breast cancer drugs.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Sanya Haiaty ◽  
Mohammad-Reza Rashidi ◽  
Maryam Akbarzadeh ◽  
Ahad Bazmany ◽  
Mostafa Mostafazadeh ◽  
...  

Abstract Background Vasculogenic mimicry (VM) is characterized by the formation of tubular structure inside the tumor stroma. It has been shown that a small fraction of cancer cells, namely cancer stem cells (CSCs), could stimulate the development of vascular units in the tumor niche, leading to enhanced metastasis to the remote sites. This study aimed to study the inhibitory effect of phytocompound, Thymoquinone (TQ), on human breast MDA-MB-231 cell line via monitoring Wnt/PI3K signaling pathway. Methods MDA-MB-231 CSCs were incubated with different concentrations of TQ for 48 h. The viability of CSCs was determined using the MTT assay. The combination of TQ and PI3K and Wnt3a inhibitors was examined in CSCs. By using the Matrigel assay, we measured the tubulogenesis capacity. The percent of CD24− CSCs and Rhodamine 123 efflux capacity was studied using flow cytometry analysis. Protein levels of Akt, p-Akt, Wnt3a, vascular endothelial-cadherin (VE-cadherin), and matrix metalloproteinases-2 and -9 (MMP-2 and -9) were detected by western blotting. Results TQ decreased the viability of CSCs in a dose-dependent manner. The combination of TQ with PI3K and Wnt3a inhibitors reduced significantly the survival rate compared to the control group (p < 0.05). TQ could blunt the stimulatory effect of vascular endothelial growth factor (VEGF), epidermal growth factor (EGF), fibroblast growth factor (FGF) on CSCs (p < 0.05). The vasculogenic capacity of CSCs was reduced after being-exposed to TQ (p < 0.05). Western blotting revealed the decrease of CSCs metastasis by suppressing MMP-2 and -9. The protein level of VE-cadherin was also diminished in TQ-treated CSCs as compared to the control cell (p < 0.05), indicating inhibition of mesenchymal-endothelial transition (MendT). TQ could suppress Wnt3a and PI3K, which coincided with the reduction of the p-Akt/Akt ratio. TQ had the potential to decrease the number of CD24− CSCs and Rhodamine 123 efflux capacity after 48 h. Conclusion TQ could alter the vasculogenic capacity and mesenchymal-epithelial transition of human breast CSCs in vitro. Thus TQ together with anti-angiogenic therapies may be a novel therapeutic agent in the suppression of VM in breast cancer.


PLoS ONE ◽  
2020 ◽  
Vol 15 (11) ◽  
pp. e0240020
Author(s):  
Septelia Inawati Wanandi ◽  
Agus Limanto ◽  
Elvira Yunita ◽  
Resda Akhra Syahrani ◽  
Melva Louisa ◽  
...  

Breast cancer stem cells (BCSCs) express high levels of the anti-apoptotic protein, survivin. This study aimed to discover a natural active compound with anti-cancer properties that targeted survivin in human breast cancer stem cells. From the seven examined compounds, andrographolide was selected as a lead compound through in silico molecular docking with survivin, caspase-9, and caspase-3. We found that the affinity between andrographolide and survivin is higher than that with caspase-9 and caspase-3. Human CD24-/CD44+ BCSCs were treated with andrographolide in vitro for 24 hours. The cytotoxic effect of andrographolide on BCSCs was compared to that on human mesenchymal stem cells (MSCs). The expression of survivin, caspase-9, and caspase-3 mRNA was analyzed using qRT-PCR, while Thr34-phosphorylated survivin and total survivin levels were determined using ELISA and Immunoblotting assay. Annexin-V/PI flow cytometry assays were performed to evaluate the apoptotic activity of andrographolide. Our results demonstrate that the CC50 of andrographolide in BCSCs was 0.32mM, whereas there was no cytotoxic effect in MSCs. Moreover, andrographolide decreased survivin and Thr34-phosphorylated survivin, thus inhibiting survivin activation and increasing survivin mRNA in BCSCs. The apoptotic activity of andrographolide was revealed by the increase of caspase-3 mRNA and protein, as well as the increase in both the early and late phases of apoptosis. In conclusion, andrographolide can be considered an anti-cancer compound that targets BCSCs due to its molecular interactions with survivin, caspase-9, and caspase-3, which induce apoptosis. We suggest that the binding of andrographolide to survivin is a critical aspect of the effect of andrographolide.


2022 ◽  
Vol 12 ◽  
Author(s):  
Jing-Yan Cheng ◽  
Jung-Tung Hung ◽  
Juway Lin ◽  
Fei-Yun Lo ◽  
Jing-Rong Huang ◽  
...  

SynopsisA sugar-lipid molecule called OAcGD2 is a novel marker for breast cancer stem cells. Treatment with anti-OAcGD2 mAb8B6 may have superior anticancer efficacy by targeting cancer stem cells, thereby reducing metastasis and recurrence of cancer.BackgroundCancer stem cells (CSCs) that drive tumor progression and disease recurrence are rare subsets of tumor cells. CSCs are relatively resistant to conventional chemotherapy and radiotherapy. Eradication of CSCs is thus essential to achieve durable responses. GD2 was reported to be a CSC marker in human triple-negative breast cancer, and anti-GD2 immunotherapy showed reduced tumor growth in cell lines. Using a specific anti-OAcGD2 antibody, mAb8D6, we set out to determine whether OAcGD2+ cells exhibit stem cell properties and mAb8D6 can inhibit tumor growth by targeting OAcGD2+CSCs.MethodOAcGD2 expression in patient-derived xenografts (PDXs) of breast cancer was determined by flow cytometric analyses using mAb8D6. The stemness of OAcGD2+ cells isolated by sorting and the effects of mAb8B6 were assessed by CSC growth and mammosphere formation in vitro and tumor growth in vivo using PDX models.ResultWe found that the OAcGD2 expression levels in six PDXs of various molecular subtypes of breast cancer highly correlated with their previously defined CSC markers in these PDXs. The sorted OAcGD2+ cells displayed a greater capacity for mammosphere formation in vitro and tumor initiation in vivo than OAcGD2− cells. In addition, the majority of OAcGD2+ cells were aldehyde dehydrogenase (ALDH+) or CD44hiCD24lo, the known CSC markers in breast cancer. Treatment of PDXs-bearing mice with mAb8B6, but not doxorubicin, suppressed the tumor growth, along with reduced CSCs as assessed by CSC markers and in vivo tumorigenicity. In vitro, mAb8B6 suppressed proliferation and mammosphere formation and induced apoptosis of OAcGD2+ breast cancer cells harvested from PDXs, in a dose-dependent manner. Finally, administration of mAb8B6 in vivo dramatically suppressed tumor growth of OAcGD2+ breast CSCs (BCSCs) with complete tumor abrogation in 3/6 mice.ConclusionOAcGD2 is a novel marker for CSC in various subtypes of breast cancer. Anti-OAcGD2 mAb8B6 directly eradicated OAcGD2+ cells and reduced tumor growth in PDX model. Our data demonstrate the potential of mAb8B6 as a promising immunotherapeutic agent to target BCSCs.


Sign in / Sign up

Export Citation Format

Share Document