Lipoxygenase pathway in tulip: biosynthesis of ketols

2000 ◽  
Vol 28 (6) ◽  
pp. 851-853 ◽  
Author(s):  
A. N. Grechkin ◽  
L. S. Mukhtarova ◽  
M. Hamberg

The metabolism in vitro of [1-14C]linoleate, [1-14C]linolenate and their 9(S)-hydroperoxides in tulip (Tulipa gesneriana) was found to be under the control of 9-lipoxygenase and allene oxide synthase, and directed towards α-ketol, γ-ketol and the novel compound (12Z)-10-oxo-11-hydroxy- 12-octadecadienoic acid (10,11-ketol). Potent activity of allene oxide cyclase (in bulbs) and a new enzyme, γ-ketol reductase (in bulbs and leaves), was detected. Metabolism in flowers is directed predominantly towards α-ketol hydroperoxide.

2000 ◽  
Vol 352 (2) ◽  
pp. 501-509 ◽  
Author(s):  
Alexander N. GRECHKIN ◽  
Lucia S. MUKHTAROVA ◽  
Mats HAMBERG

The in vitro metabolism of [1-14C]linoleate, [1-14C]linolenate and their 9(S)-hydroperoxides was studied in cell-free preparations from tulip (Tulipa gesneriana) bulbs, leaves and flowers. Linoleate and its 9-hydroperoxide were converted by bulb and leaf preparations into three ketols: (12Z)-9-hydroxy-10-oxo-12-octadecadienoic acid (α-ketol), (11E)-10-oxo-13-hydroxy-11-octadecadienoic acid (γ-ketol) and a novel compound, (12Z)-10-oxo-11-hydroxy-12-octadecadienoic acid (10,11-ketol), in the approximate molar proportions of 10:3:1. The corresponding 15,16-dehydro α- and γ-ketols were the main metabolites of [1-14C]linolenate and its 9-hydroperoxide. Thus bulbs and leaves possessed 9-lipoxygenase and allene oxide synthase activities. Incubations with flower preparations gave α-ketol hydro(pero)xides as predominant metabolites. Bulb and leaf preparations possessed a novel enzyme activity, γ-ketol reductase, which reduces γ-ketol to 10-oxo-13-hydroxyoctadecanoic acid (dihydro-γ-ketol) in the presence of NADH. Exogenous linolenate 13(S)-hydroperoxide was converted mostly into chiral (9S,13S)-12-oxo-10-phytodienoate (99.5% optical purity) by bulb preparations, while [1-14C]linolenate was a precursor for ketols only. Thus tulip bulbs possess abundant allene oxide cyclase activity, the substrate for which is linolenate 13(S)-hydroperoxide, even though 13(S)-lipoxygenase products were not detectable in the bulbs. The majority of the cyclase activity was found in the microsomes (105g pellet). Cyclase activity was not found in the other tissues examined, but only in the bulbs. The ketol route of the lipoxygenase pathway, mediated by 9-lipoxygenase and allene oxide synthase activities, has not been detected previously in the vegetative organs of any plant species.


2003 ◽  
Vol 69 (6) ◽  
pp. 351-357 ◽  
Author(s):  
Yasuhiro Ishiga ◽  
Yoshishige Inagaki ◽  
Kazuhiro Toyoda ◽  
Tomonori Shiraishi ◽  
Yuki Ichinose

PLoS ONE ◽  
2018 ◽  
Vol 13 (1) ◽  
pp. e0190884 ◽  
Author(s):  
Anna Zdyb ◽  
Marco G. Salgado ◽  
Kirill N. Demchenko ◽  
Wolfram G. Brenner ◽  
Małgorzata Płaszczyca ◽  
...  

2021 ◽  
Vol 22 (9) ◽  
pp. 4737
Author(s):  
Yana Y. Toporkova ◽  
Elena O. Smirnova ◽  
Natalia V. Lantsova ◽  
Lucia S. Mukhtarova ◽  
Alexander N. Grechkin

The CYP74 clan cytochromes (P450) are key enzymes of oxidative metabolism of polyunsaturated fatty acids in plants, some Proteobacteria, brown and green algae, and Metazoa. The CYP74 enzymes, including the allene oxide synthases (AOSs), hydroperoxide lyases, divinyl ether synthases, and epoxyalcohol synthases (EASs) transform the fatty acid hydroperoxides to bioactive oxylipins. A novel CYP74 clan enzyme CYP440A18 of the Asian (Belcher’s) lancelet (Branchiostoma belcheri, Chordata) was biochemically characterized in the present work. The recombinant CYP440A18 enzyme was active towards all substrates used: linoleate and α-linolenate 9- and 13-hydroperoxides, as well as with eicosatetraenoate and eicosapentaenoate 15-hydroperoxides. The enzyme specifically converted α-linolenate 13-hydroperoxide (13-HPOT) to the oxiranyl carbinol (9Z,11R,12R,13S,15Z)-11-hydroxy-12,13-epoxy-9,15-octadecadienoic acid (EAS product), α-ketol, 12-oxo-13-hydroxy-9,15-octadecadienoic acid (AOS product), and cis-12-oxo-10,15-phytodienoic acid (AOS product) at a ratio of around 35:5:1. Other hydroperoxides were converted by this enzyme to the analogous products. In contrast to other substrates, the 13-HPOT and 15-HPEPE yielded higher proportions of α-ketols, as well as the small amounts of cyclopentenones, cis-12-oxo-10,15-phytodienoic acid and its higher homologue, dihomo-cis-12-oxo-3,6,10,15-phytotetraenoic acid, respectively. Thus, the CYP440A18 enzyme exhibited dual EAS/AOS activity. The obtained results allowed us to ascribe a name “B. belcheri EAS/AOS” (BbEAS/AOS) to this enzyme. BbEAS/AOS is a first CYP74 clan enzyme of Chordata species possessing AOS activity.


2019 ◽  
Vol 20 (14) ◽  
pp. 3569 ◽  
Author(s):  
Roberto Berni ◽  
Giampiero Cai ◽  
Xuan Xu ◽  
Jean-Francois Hausman ◽  
Gea Guerriero

Sweet cherries are non-climacteric fruits whose early development is characterized by high levels of the phytohormone jasmonic acid (JA). Important parameters, such as firmness and susceptibility to cracking, can be affected by pre- and postharvest treatments of sweet cherries with JA. Despite the impact of JA on sweet cherry development and fruit characteristics, there are no studies (to the best of our knowledge) identifying the genes involved in the JA biosynthetic pathway in this species. We herein identify the sweet cherry members of the lipoxygenase family (13-LOX); allene oxide synthase, allene oxide cyclase and 12-oxo-phytodienoic acid reductase 3, as well as genes encoding the transcriptional master regulator MYC2. We analyze their expression pattern in four non-commercial Tuscan varieties (‘Carlotta’, ‘Maggiola’, ‘Morellona’, ‘Crognola’) having different levels of bioactives (namely phenolics). The highest differences are found in two genes encoding 13-LOX in the variety ‘Maggiola’ and one MYC2 isoform in ‘Morellona’. No statistically-significant variations are instead present in the allene oxide synthase, allene oxide cyclase and 12-oxo-phytodienoic acid reductase 3. Our data pave the way to follow-up studies on the JA signaling pathway in these ancient varieties, for example in relation to development and post-harvest storage.


Author(s):  
Yuta Ihara ◽  
Takayuki Wakamatsu ◽  
Mineyuki Yokoyama ◽  
Daisuke Maezawa ◽  
Hiroyuki Ohta ◽  
...  

Abstract KODA (9-hydroxy-10-oxo-12(Z),15(Z)-octadecadienoic acid) is a plant oxylipin involved in recovery from stress. As an agrichemical, KODA helps maintain crop production under various environmental stresses. In plants, KODA is synthesized from α-linolenic acids via 9-lipoxygenase (9-LOX) and allene oxide synthase (AOS), although the amount is usually low except in the free-floating aquatic plant Lemna paucicostata. To improve KODA biosynthetic yield in other plants such as Nicotiana benthamiana and Arabidopsis thaliana, we developed a system to overproduce KODA in vivo via ectopic expression of L. paucicostata 9-LOX and AOS. The transient expression in N. benthamiana showed that the expression of these two genes is sufficient to produce KODA in leaves. However, stable expression of 9-LOX and AOS (with consequent KODA production) in Arabidopsis plants succeeded only when the two proteins were localized in plastids or the endoplasmic reticulum/lipid droplets. Although only small amounts of KODA could be detected in leaf extracts of transgenic Nicotiana or Arabidopsis plants, subsequent incubation of the extracts increased KODA abundance over time. Therefore, KODA production in transgenic plants stably expressing 9-LOX and AOS requires specific subcellular localization of these two enzymes and incubation of leaf crude extracts, which liberates α-linolenic acid via breakdown of endogenous lipids.


Sign in / Sign up

Export Citation Format

Share Document