Rho GTPases and the control of cell behaviour

2005 ◽  
Vol 33 (5) ◽  
pp. 891-895 ◽  
Author(s):  
A. Hall

Rho, Rac and Cdc42, three members of the Rho family of small GTPases, each control a signal transduction pathway linking membrane receptors to the assembly and disassembly of the actin cytoskeleton and of associated integrin adhesion complexes. Rho regulates stress fibre and focal adhesion assembly, Rac regulates the formation of lamellipodia protrusions and membrane ruffles, and Cdc42 triggers filopodial extensions at the cell periphery. These observations have led to the suggestion that wherever filamentous actin is used to drive a cellular process, Rho GTPases are likely to play an important regulatory role. Rho GTPases have also been reported to control other cellular activities, such as the JNK (c-Jun N-terminal kinase) and p38 MAPK (mitogen-activated protein kinase) cascades, an NADPH oxidase enzyme complex, the transcription factors NF-κB (nuclear factor κB) and SRF (serum-response factor), and progression through G1 of the cell cycle. Thus Rho, Rac and Cdc42 can regulate the actin cytoskeleton and gene transcription to promote co-ordinated changes in cell behaviour. We have been analysing the biochemical contributions of Rho GTPases in cell movement and have found that Rac controls cell protrusion, while Cdc42 controls cell polarity.

2000 ◽  
Vol 355 (1399) ◽  
pp. 965-970 ◽  
Author(s):  
Alan Hall ◽  
Catherine D. Nobes

The actin cytoskeleton plays a fundamental role in all eukaryotic cells—it is a major determinant of cell morphology and polarity and the assembly and disassembly of filamentous actin structures provides a driving force for dynamic processes such as cell motility, phagocytosis, growth cone guidance and cytokinesis. The ability to reorganize actin filaments is a fundamental property of embryonic cells during development; the shape changes accompanying gastrulation and dorsal closure, for example, are dependent on the plasticity of the actin cytoskeleton, while the ability of cells or cell extensions, such as axons, to migrate within the developing embryo requires rapid and spatially organized changes to the actin cytoskeleton in response to the external environment. W ork in mammalian cells over the last decade has demonstrated the central role played by the highly conserved Rho family of small GTPases in signal transduction pathways that link plasma membrane receptors to the organization of the actin cytoskeleton.


2012 ◽  
Vol 40 (6) ◽  
pp. 1378-1382 ◽  
Author(s):  
Alan Hall

Rho GTPases comprise a family of molecular switches that control signal transduction pathways in eukaryotic cells. A conformational change induced upon binding GTP promotes an interaction with target (effector) proteins to generate a cellular response. A highly conserved function of Rho GTPases from yeast to humans is to control the actin cytoskeleton, although, in addition, they promote a wide range of other cellular activities. Changes in the actin cytoskeleton drive many dynamic aspects of cell behaviour, including morphogenesis, migration, phagocytosis and cytokinesis, and the dysregulation of Rho GTPases is associated with numerous human diseases and disorders.


Blood ◽  
2012 ◽  
Vol 119 (2) ◽  
pp. 573-582 ◽  
Author(s):  
Roland Csépányi-Kömi ◽  
Gábor Sirokmány ◽  
Miklós Geiszt ◽  
Erzsébet Ligeti

Members of the Rac/Rho family of small GTPases play an essential role in phagocytic cells in organization of the actin cytoskeleton and production of toxic oxygen compounds. GTPase-activating proteins (GAPs) decrease the amount of the GTP-bound active form of small GTPases, and contribute to the control of biologic signals. The number of potential Rac/RhoGAPs largely exceeds the number of Rac/Rho GTPases and the expression profile, and their specific role in different cell types is largely unknown. In this study, we report for the first time the properties of full-length ARHGAP25 protein, and show that it is specifically expressed in hematopoietic cells, and acts as a RacGAP both in vitro and in vivo. By silencing and overexpressing the protein in neutrophil model cell lines (PLB-985 and CosPhoxFcγR, respectively) and in primary macrophages, we demonstrate that ARHGAP25 is a negative regulator of phagocytosis acting probably via modulation of the actin cytoskeleton.


2001 ◽  
Vol 114 (21) ◽  
pp. 3795-3803 ◽  
Author(s):  
Torsten Wittmann ◽  
Clare M. Waterman-Storer

Migrating cells display a characteristic polarization of the actin cytoskeleton. Actin filaments polymerise in the protruding front of the cell whereas actin filament bundles contract in the cell body, which results in retraction of the cell’s rear. The dynamic organization of the actin cytoskeleton provides the force for cell motility and is regulated by small GTPases of the Rho family, in particular Rac1, RhoA and Cdc42. Although the microtubule cytoskeleton is also polarized in a migrating cell, and microtubules are essential for the directed migration of many cell types, their role in cell motility is not well understood at a molecular level. Here, we discuss the potential molecular mechanisms for interplay of microtubules, actin and Rho GTPase signalling in cell polarization and motility. Recent evidence suggests that microtubules locally modulate the activity of Rho GTPases and, conversely, Rho GTPases might be responsible for the initial polarization of the microtubule cytoskeleton. Thus, microtubules might be part of a positive feedback mechanism that maintains the stable polarization of a directionally migrating cell.


2013 ◽  
Vol 453 (1) ◽  
pp. 17-25 ◽  
Author(s):  
Fumihiko Nakamura

Cell migration, phagocytosis and cytokinesis are mechanically intensive cellular processes that are mediated by the dynamic assembly and contractility of the actin cytoskeleton. GAPs (GTPase-activating proteins) control activities of the Rho family proteins including Cdc42, Rac1 and RhoA, which are prominent upstream regulators of the actin cytoskeleton. The present review concerns a class of Rho GAPs, FilGAP (ARHGAP24 gene product) and its close relatives (ARHGAP22 and AHRGAP25 gene products). FilGAP is a GAP for Rac1 and a binding partner of FLNa (filamin A), a widely expressed F-actin (filamentous actin)-cross-linking protein that binds many different proteins that are important in cell regulation. Phosphorylation of FilGAP serine/threonine residues and binding to FLNa modulate FilGAP's GAP activity and, as a result, its ability to regulate cell protrusion and spreading. FLNa binds to FilGAP at F-actin-enriched sites, such as at the leading edge of the cell where Rac1 activity is controlled to inhibit actin assembly. FilGAP then dissociates from FLNa in actin networks by myosin-dependent mechanical deformation of FLNa's FilGAP-binding site to relocate at the plasma membrane by binding to polyphosphoinositides. Since actomyosin contraction is activated downstream of RhoA–ROCK (Rho-kinase), RhoA activity regulates Rac1 through FilGAP by signalling to the force-generating system. FilGAP and the ARHGAP22 gene product also act as mediators between RhoA and Rac1 pathways, which lead to amoeboid and mesenchymal modes of cell movements respectively. Therefore FilGAP and its close relatives are key regulators that promote the reciprocal inhibitory relationship between RhoA and Rac1 in cell shape changes and the mesenchymal–amoeboid transition in tumour cells.


2003 ◽  
Vol 285 (4) ◽  
pp. C935-C944 ◽  
Author(s):  
Iris Carton ◽  
Diane Hermans ◽  
Jan Eggermont

An important consequence of cell swelling is the reorganization of the F-actin cytoskeleton in different cell types. We demonstrate in this study by means of rhodamine-phalloidin labeling and fluorescence microscopy that a drastic reorganization of F-actin occurs in swollen Rat-1 fibroblasts: stress fibers disappear and F-actin patches are formed in peripheral extensions at the cell border. Moreover, we demonstrate that activation of both Rac and Cdc42, members of the family of small Rho GTPases, forms the link between the hypotonic stimulation and F-actin reorganization. Indeed, inhibition of the small GTPases RhoA, Rac, and Cdc42 (by Clostridium difficile toxin B) prevents the hypotonicity-induced reorganization of the actin cytoskeleton, whereas inhibition of RhoA alone (by C. limosum C3 exoenzyme) does not preclude this rearrangement. Second, a direct activation and translocation toward the actin patches underneath the plasma membrane is observed for endogenous Rac and Cdc42 (but not for RhoA) during cell swelling. Finally, transfection of Rat-1 fibroblasts with constitutively active RhoA, dominant negative Rac, or dominant negative Cdc42 abolishes the swelling-induced actin reorganization. Interestingly, application of cRGD, a competitor peptide for fibronectin-integrin association, induces identical membrane protrusions and changes in the F-actin cytoskeleton that are also inhibited by C. difficile toxin B and dominant negative Rac or Cdc42. Moreover, cRGD also induces a redistribution of endogenous Rac and Cdc42 to the newly formed submembranous F-actin patches. We therefore conclude that hypotonicity and cRGD remodel the F-actin cytoskeleton in Rat-1 fibroblasts in a Rac/Cdc42-dependent way.


2002 ◽  
Vol 22 (9) ◽  
pp. 2952-2964 ◽  
Author(s):  
Hironori Katoh ◽  
Amane Harada ◽  
Kazutoshi Mori ◽  
Manabu Negishi

ABSTRACT Rho family small GTPases are key regulators of the actin cytoskeleton in various cell types. The Rnd proteins, Rnd1, Rnd2, and Rnd3/RhoE, have been recently identified as new members of the Rho family of GTPases, and expression of Rnd1 or Rnd3 in fibroblasts causes the disassembly of actin stress fibers and the retraction of the cell body to produce extensively branching cellular processes. Here we have performed a yeast two-hybrid screening by using Rnd1 as bait and identified a novel protein that specifically binds to Rnd GTPases. We named this protein Socius. Socius directly binds to Rnd GTPases through its COOH-terminal region. When transfected into COS-7 cells, Socius is translocated to the cell periphery in response to Rnd1 and Rnd3 and colocalized with the GTPases. While expression of wild-type Socius in Swiss 3T3 fibroblasts has little effect on the actin cytoskeleton, the expression of a membrane-targeted form of Socius, containing a COOH-terminal farnesylation motif (Socius-CAAX), induces a dramatic loss of stress fibers. The inhibitory effect of Socius-CAAX on stress fiber formation is enhanced by truncation of its NH2 terminus. On the other hand, the expression of Socius-CAAX or its NH2 terminus-truncated form suppresses the Rnd-induced retraction of the cell body and the production of extensively branching cellular processes, although the disassembly of stress fibers is observed. We propose that Socius participates in the Rnd GTPase-induced signal transduction pathways, leading to reorganization of the actin cytoskeleton.


2008 ◽  
Vol 57 (6) ◽  
pp. 765-770 ◽  
Author(s):  
Ralf Gerhard ◽  
Stefanie Nottrott ◽  
Janett Schoentaube ◽  
Helma Tatge ◽  
Alexandra Olling ◽  
...  

The intestinal epithelial cell line HT-29 was used to study the apoptotic effect of Clostridium difficile toxin A (TcdA). TcdA is a 300 kDa single-chain protein, which glucosylates and thereby inactivates small GTPases of the Rho family (Rho, Rac and Cdc42). The effect of TcdA-catalysed glucosylation of the Rho GTPases is well known: reorganization of the actin cytoskeleton with accompanying morphological changes in cells, leading to complete rounding of cells and destruction of the intestinal barrier function. Less is known about the mechanism by which apoptosis is induced in TcdA-treated cells. In this study, TcdA induced the activation of caspase-3, -8 and -9. Apoptosis, as estimated by the DNA content of cells, started as early as 24 h after the addition of TcdA. The impact of Rho glucosylation was obvious when mutant TcdA with reduced or deficient glucosyltransferase activity was applied. TcdA mutant W101A, with 50-fold reduced glucosyltransferase activity, induced apoptosis only at an equipotent concentration compared with wild-type TcdA at a 50 % effective concentration of 0.2 nM. The enzyme-deficient mutant TcdA D285/287N was not able to induce apoptosis. Apoptosis induced by TcdA strictly depended on the activation of caspases, and was completely blocked by the pan-caspase inhibitor z-VAD-fmk. Destruction of the actin cytoskeleton by latrunculin B was not sufficient to induce apoptosis, indicating that apoptosis induced by TcdA must be due to another mechanism. In summary, TcdA-induced apoptosis (cytotoxic effect) depends on the glucosylation of Rho GTPases, but is not triggered by destruction of the actin cytoskeleton (cytopathic effect).


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 732-732
Author(s):  
Harald Schulze ◽  
Manav Korpal ◽  
Jonathan Hurov ◽  
Sang-We Kim ◽  
Jinghang Zhang ◽  
...  

Abstract To produce blood platelets, the megakaryocyte (MK) cytoplasm elaborates proplatelets, accompanied by expansion of membrane surface area and dramatic cytoskeletal rearrangements. Invaginated demarcation membranes (DMS) are thought to be the source for the proplatelet and platelet membranes, however, they have THUS far BEEN INSUFFICIENTLY characterized. We first used a mouse model where the cDNA encoding enhanced yellow fluorescence protein (EYFP) with a C-terminally introduced myristoyl acceptor site has been introduced into the GPIIb locus. Heterozygous knock-in mice reveal yellow fluroescent MKs with an internal staining pattern that resembles the reticiulated pattern of the DMS as found in micrographs. Proplatelet-forming MKs reveal contiguous membrane connection between the internally stained membranes and the outlines of the proplatelet shaft resulting in production of fluorescent platelets. We next sought to characterize the internal membranes biochemically and retrovirally infected MKs to express the green fluorescence protein (EGFP) tagged with the pleckstrin homology domain of phospholipase Cδ1 (PLCδ1) which binds with high specificity to phosphatidylinositol(4,5)P2 (PIP2). Young MKs stain the cell periphery as described for most other cell types. Mature MKs, however, stain the internal membranes, whereas the plasma membrane becomes PIP2-negative as shown by co-staining with CD41. Proplatelet membranes emanate from these internal PIP2-positive membranes, proving that the DMS is indeed the membrane reservoir during platelet biogenesis. Appearance of PI-4,5-P2 in the DMS occurs in proximity to PI-5-P-4-kinaseα (PI4Kα), a protein highly expressed in MKs and platelets, as shown by overexpressing EGFP-tagged kinase in primary MKs. In addition, shRNA-mediated loss of PIP4Kα or depletion of its presumptive substrate block DMS development and expansion of MK size. Thus, PI-4,5-P2 is a marker and essential component of internal membranes and is most likely introduced about the non-canonical pathway using PI5P as the substrate. PI-4,5-P2 promotes actin polymerization by activating small GTPases from the Rac/Rho superfamily as well as Wiskott-Aldrich Syndrome (WASp) family proteins. Indeed, PIP2 is associated with filamentous actin when MKs are co-stained with phalloidin. Expression of a dominant-negative N-WASp C-terminal fragment (CA-domain) that inactivats all WASp/WAVE family members leads to Arp3 binding without assembling the complete Arp2/3 complex, thus inhibiting actin filament nucleation. F-Actin staining in the infected MKs reveals a pattern similar to that of MKs treated with pharmacologic dosage of actin polymerization-antagonists like cytochalasin D, which disrupts actin filaments and inhibits proplatelet formation when administered early in MK culture. Dominant-negative WASp impairs proplatelet elaboration similarly, acting at a step past expansion of the cell volume. These observations implicate a signaling pathway wherein PI-4,5-P2 facilitates DMS development and suggests a pathway that links a DMS lipid marker with local assembly of actin fibers as a requirement for platelet biogenesis.


2003 ◽  
Vol 371 (2) ◽  
pp. 233-241 ◽  
Author(s):  
Britta QUALMANN ◽  
Harry MELLOR

The members of the Rho subfamily of small GTPases are key regulators of the actin cytoskeleton. However, recent studies have provided evidence for multiple additional roles for these signalling proteins in controlling endocytic traffic. Here we review our current understanding of Rho GTPase action within the endocytic pathway and examine the potential points of convergence with the more established, actin-based functions of these signalling proteins.


Sign in / Sign up

Export Citation Format

Share Document