Nucleus–vacuole junctions in yeast: anatomy of a membrane contact site

2006 ◽  
Vol 34 (3) ◽  
pp. 340-342 ◽  
Author(s):  
E. Kvam ◽  
D.S. Goldfarb

NV junctions (nucleus–vacuole junctions) in Saccharomyces cerevisiae are MCSs (membrane contact sites) formed through specific interactions between Vac8p on the vacuole membrane and Nvj1p in the outer nuclear membrane, which is continuous with the perinuclear ER (endoplasmic reticulum). NV junctions mediate a unique autophagic process that degrades portions of the yeast nucleus through a process called ‘piecemeal microautophagy of the nucleus’ (PMN). Our studies suggest that the lipid composition of NV junctions plays an important role in the biogenesis of PMN structures. NV junctions represent a unique model system for studying the biology of ER MCSs, as well as the molecular mechanism of selective microautophagy.

2016 ◽  
Vol 44 (2) ◽  
pp. 528-533 ◽  
Author(s):  
Pedro Carpio Malia ◽  
Christian Ungermann

Eukaryotic cells rely on a set of membrane-enclosed organelles to perform highly efficient reactions in an optimized environment. Trafficking of molecules via vesicular carriers and membrane contact sites (MCS) allow the coordination between these compartments, though the precise mechanisms are still enigmatic. Among the cellular organelles, the lysosome/vacuole stands out as a central hub, where multiple pathways merge. Importantly, the delivered material is degraded and the monomers are recycled for further usage, which explains its wide variety of roles in controlling cellular metabolism. We will highlight recent advances in the field by focusing on the yeast vacuole as a model system to understand lysosomal function in general.


2018 ◽  
Vol 217 (10) ◽  
pp. 3593-3607 ◽  
Author(s):  
Björn D.M. Bean ◽  
Samantha K. Dziurdzik ◽  
Kathleen L. Kolehmainen ◽  
Claire M.S. Fowler ◽  
Waldan K. Kwong ◽  
...  

The regulated expansion of membrane contact sites, which mediate the nonvesicular exchange of lipids between organelles, requires the recruitment of additional contact site proteins. Yeast Vps13 dynamically localizes to membrane contacts that connect the ER, mitochondria, endosomes, and vacuoles and is recruited to the prospore membrane in meiosis, but its targeting mechanism is unclear. In this study, we identify the sorting nexin Ypt35 as a novel adaptor that recruits Vps13 to endosomal and vacuolar membranes. We characterize an interaction motif in the Ypt35 N terminus and identify related motifs in the prospore membrane adaptor Spo71 and the mitochondrial membrane protein Mcp1. We find that Mcp1 is a mitochondrial adaptor for Vps13, and the Vps13–Mcp1 interaction, but not Ypt35, is required when ER-mitochondria contacts are lost. All three adaptors compete for binding to a conserved six-repeat region of Vps13 implicated in human disease. Our results support a competition-based model for regulating Vps13 localization at cellular membranes.


2014 ◽  
Vol 204 (7) ◽  
pp. 1083-1086 ◽  
Author(s):  
Nikolaus Pfanner ◽  
Martin van der Laan ◽  
Paolo Amati ◽  
Roderick A. Capaldi ◽  
Amy A. Caudy ◽  
...  

The mitochondrial inner membrane contains a large protein complex that functions in inner membrane organization and formation of membrane contact sites. The complex was variably named the mitochondrial contact site complex, mitochondrial inner membrane organizing system, mitochondrial organizing structure, or Mitofilin/Fcj1 complex. To facilitate future studies, we propose to unify the nomenclature and term the complex “mitochondrial contact site and cristae organizing system” and its subunits Mic10 to Mic60.


2016 ◽  
Vol 44 (2) ◽  
pp. 447-451 ◽  
Author(s):  
Shweta Yadav ◽  
Shamshad Cockcroft ◽  
Padinjat Raghu

Several recent studies have demonstrated the existence of membrane contact sites (MCS) between intracellular organelles in eukaryotic cells. Recent exciting studies have also demonstrated the existence of biomolecular interactions at these contact sites in mediating changes in the membrane composition of the cellular compartments. However, the role of such contact sites in regulating organelle function and physiological processes remains less clear. In this review we discuss the existence of a contact site between the plasma membrane (PM) and the endoplasmic reticulum (ER) in Drosophila photoreceptors. Further, we discuss the role of specific proteins present at this location in regulating phospholipid turnover and its impact in regulating a physiological process, namely phototransduction.


2021 ◽  
Author(s):  
Inês Gomes Castro ◽  
Shawn P Shortill ◽  
Samantha Katarzyna Dziurdzik ◽  
Angela Cadou ◽  
Suriakarthiga Ganesan ◽  
...  

Actively maintained close appositions, or contact sites, between organelle membranes, enable the efficient transfer of biomolecules between the various cellular compartments. Several such sites have been described together with their tethering machinery. Despite these advances we are still far from a comprehensive understanding of the function and regulation of most contact sites. To systematically characterize the proteome of contact sites and support the discovery of new tethers and functional molecules, we established a high throughput screening approach in Saccharomyces cerevisiae based on co-localization imaging. We imaged split fluorescence reporters for six different contact sites, two of which have never been studied before, on the background of 1165 strains expressing a mCherry-tagged yeast protein that have a cellular punctate distribution (a hallmark of contact sites). By scoring both co-localization events and effects on reporter size and abundance, we discovered over 100 new potential contact site residents and effectors in yeast. Focusing on several of the newly identified residents, we identified one set of hits as previously unrecognized homologs to Vps13 and Atg2. These proteins share their lipid transport domain, thus expanding this family of lipid transporters. Analysis of another candidate, Ypr097w, which we now call Lec1 (Lipid-droplet Ergosterol Cortex 1), revealed that this previously uncharacterized protein dynamically shifts between lipid droplets and the cell cortex, and plays a role in regulation of ergosterol distribution in the cell.


2019 ◽  
Author(s):  
Matthew J. Hayes ◽  
Anne-C. Zakrzewski ◽  
Tim P. Levine ◽  
Maximilian J. Telford

AbstractSymsagittifera roscoffensis is a small marine worm found in the intertidal zone of sandy beaches around the European shores of the Atlantic. S. roscoffensis is a member of the Acoelomorpha, a group of flatworms formerly classified with the Platyhelminthes, but now recognised as Xenacoelomorpha, a separate phylum of disputed affinity. We have used electron microscopy to examine the process of spermiogenesis (the final stage of spermatogenesis) in S. roscoffensis, by which spermatids form highly elongated spermatozoa. Their nuclei are long and thread-like, running most of the cell’s length and during the process a pair of flagella are fully incorporated into the cell body. Two previously undescribed inter-organelle contact sites form at different stages of spermiogenesis. Strikingly, there is an extensive nucleus-plasma membrane contact site. Golgi-derived granules containing electron-dense filaments line up along the spermatid plasma membrane, undergo a conformational change, and donate material that forms a peri-nuclear layer that cements this contact site. We also show in earlier stage spermatids that the same granules are associated with microtubules, presumably for traffic along the elongating cell. We identify a second spermiogenesis-specific contact site where sheaths engulfing each internalising flagellum contact the nuclear envelope. Finally, detailed studies of the spermatozoon axonemes show that the central keel has varying numbers of microtubules along the length of the cell, and is likely to be a centriole derivative.Summary sentenceDuring spermiogenesis in the acoel flatworm Symsagittifera roscoffensis, two previously unidentified contact sites contribute to the structure of the mature spermatozoon and the axonemal structures show direct continuity between doublet and dense core microtubules.


Contact ◽  
2020 ◽  
Vol 3 ◽  
pp. 251525642097958
Author(s):  
Neha Pratap Singh ◽  
Christian Vannier ◽  
Thierry Galli

Inter-organelle communication is essential for the exchange of cellular content in eukaryotes, particularly at membrane contact sites between the endoplasmic reticulum (ER) and the plasma membrane (PM). Accomplishing this critical task requires close positioning of the involved membranes via tether proteins and associated complexes. One such complex involves the SNAREs Sec22b and Syntaxin 1. Discovered to be interacting at the ER-PM membrane contact site (MCS), Sec22b-Stx1 forms a unique non-fusogenic bridge tethering the two membranes. Contrarily, SNAP25 was shown to be absent from the Sec22b-Stx1 complexes. Two recent studies focused on this interplay of SNARES and Lipid transfer proteins at MCSs. The Longin domain of Sec22b appeared to be the reason behind SNAP25’s exclusion from Sec22b-Stx1 assembly, and inclusion of E-Syts. It was also shown that yeast Sec9p and mammalian SNAP25 regulate ER-PM contact sites via their interaction with LTP OSBP-homologous proteins (ORP/OSH). In this following short review, we will take a closer look at the protein complexes involving SNAREs at MCSs and potential regulation by the Longin domain of Sec22b.


Contact ◽  
2020 ◽  
Vol 3 ◽  
pp. 251525642092635
Author(s):  
Matthew J. Hayes ◽  
Anne-C. Zakrzewski ◽  
Timothy P. Levine ◽  
Maximilian J. Telford

Symsagittifera roscoffensis is a small marine worm found in the intertidal zone of sandy beaches around the European shores of the Atlantic. S. roscoffensis is a member of the Acoelomorpha, a group of flatworms formerly classified with the Platyhelminthes, but now recognized as Xenacoelomorpha, a separate phylum of disputed affinity. We have used electron microscopy to examine the process of spermiogenesis (the final stage of spermatogenesis) in S. roscoffensis, by which spermatids form highly elongated spermatozoa. Their nuclei are long and thread-like, running most of the cell’s length, and during the process, a pair of flagella are fully incorporated into the cell body. Two previously undescribed interorganelle contact sites form at different stages of spermiogenesis. Strikingly, there is an extensive nucleus–plasma membrane contact site. Golgi-derived granules containing electron-dense filaments line up along the spermatid plasma membrane, undergo a conformational change, and donate material that forms a perinuclear layer that cements this contact site. We also show in spermatids at an earlier stage that the same granules are associated with microtubules, presumably for traffic along the elongating cell. We identify a second spermiogenesis-specific contact site where sheaths engulfing each internalizing flagellum contact the nuclear envelope.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Francesca Vallese ◽  
Cristina Catoni ◽  
Domenico Cieri ◽  
Lucia Barazzuol ◽  
Omar Ramirez ◽  
...  

AbstractMembrane contact sites between virtually any known organelle have been documented and, in the last decades, their study received momentum due to their importance for fundamental activities of the cell and for the subtle comprehension of many human diseases. The lack of tools to finely image inter-organelle proximity hindered our understanding on how these subcellular communication hubs mediate and regulate cell homeostasis. We develop an improved and expanded palette of split-GFP-based contact site sensors (SPLICS) for the detection of single and multiple organelle contact sites within a scalable distance range. We demonstrate their flexibility under physiological conditions and in living organisms.


Sign in / Sign up

Export Citation Format

Share Document