Shewanella oneidensis MR-1 chemotaxis proteins and electron-transport chain components essential for congregation near insoluble electron acceptors

2012 ◽  
Vol 40 (6) ◽  
pp. 1167-1177 ◽  
Author(s):  
H. Wayne Harris ◽  
Mohamed Y. El-Naggar ◽  
Kenneth H. Nealson

Shewanella oneidensis MR-1 cells utilize a behaviour response called electrokinesis to increase their speed in the vicinity of IEAs (insoluble electron acceptors), including manganese oxides, iron oxides and poised electrodes [Harris, El-Naggar, Bretschger, Ward, Romine, Obraztsova and Nealson (2010) Proc. Natl. Acad. Sci. U.S.A. 107, 326–331]. However, it is not currently understood how bacteria remain in the vicinity of the IEA and accumulate both on the surface and in the surrounding medium. In the present paper, we provide results indicating that cells that have contacted the IEAs swim faster than those that have not recently made contact. In addition, fast-swimming cells exhibit an enhancement of swimming reversals leading to rapid non-random accumulation of cells on, and adjacent to, mineral particles. We call the observed accumulation near IEAs ‘congregation’. Congregation is eliminated by the loss of a critical gene involved with EET (extracellular electron transport) (cymA, SO_4591) and is altered or eliminated in several deletion mutants of homologues of genes that are involved with chemotaxis or energy taxis in Escherichia coli. These genes include chemotactic signal transduction protein (cheA-3, SO_3207), methyl-accepting chemotaxis proteins with the Cache domain (mcp_cache, SO_2240) or the PAS (Per/Arnt/Sim) domain (mcp_pas, SO_1385). In the present paper, we report studies of S. oneidensis MR-1 that lend some insight into how microbes in this group can ‘sense’ the presence of a solid substrate such as a mineral surface, and maintain themselves in the vicinity of the mineral (i.e. via congregation), which may ultimately lead to attachment and biofilm formation.

2004 ◽  
Vol 70 (9) ◽  
pp. 5415-5425 ◽  
Author(s):  
Charles R. Myers ◽  
Judith M. Myers

ABSTRACT The mechanisms underlying the use of insoluble electron acceptors by metal-reducing bacteria, such as Shewanella oneidensis MR-1, are currently under intensive study. Current models for shuttling electrons across the outer membrane (OM) of MR-1 include roles for OM cytochromes and the possible excretion of a redox shuttle. While MR-1 is able to release a substance that restores the ability of a menaquinone (MK)-negative mutant, CMA-1, to reduce the humic acid analog anthraquinone-2,6-disulfonate (AQDS), cross-feeding experiments conducted here showed that the substance released by MR-1 restores the growth of CMA-1 on several soluble electron acceptors. Various strains derived from MR-1 also release this substance; these include mutants lacking the OM cytochromes OmcA and OmcB and the OM protein MtrB. Even though strains lacking OmcB and MtrB cannot reduce Fe(III) or AQDS, they still release a substance that restores the ability of CMA-1 to use MK-dependent electron acceptors, including AQDS and Fe(III). Quinone analysis showed that this released substance restores MK synthesis in CMA-1. This ability to restore MK synthesis in CMA-1 explains the cross-feeding results and challenges the previous hypothesis that this substance represents a redox shuttle that facilitates metal respiration.


2000 ◽  
Vol 182 (21) ◽  
pp. 6042-6048 ◽  
Author(s):  
Gladys Alexandre ◽  
Suzanne E. Greer ◽  
Igor B. Zhulin

ABSTRACT Energy taxis encompasses aerotaxis, phototaxis, redox taxis, taxis to alternative electron acceptors, and chemotaxis to oxidizable substrates. The signal for this type of behavior is originated within the electron transport system. Energy taxis was demonstrated, as a part of an overall behavior, in several microbial species, but it did not appear as the dominant determinant in any of them. In this study, we show that most behavioral responses proceed through this mechanism in the alpha-proteobacterium Azospirillum brasilense. First, chemotaxis to most chemoeffectors typical of the azospirilla habitat was found to be metabolism dependent and required a functional electron transport system. Second, other energy-related responses, such as aerotaxis, redox taxis, and taxis to alternative electron acceptors, were found in A. brasilense. Finally, a mutant lacking a cytochromec oxidase of the cbb 3 type was affected in chemotaxis, redox taxis, and aerotaxis. Altogether, the results indicate that behavioral responses to most stimuli inA. brasilense are triggered by changes in the electron transport system.


2012 ◽  
Vol 46 (5) ◽  
pp. 2813-2820 ◽  
Author(s):  
Rui Li ◽  
James M. Tiedje ◽  
Chichia Chiu ◽  
R. Mark Worden

2005 ◽  
Vol 187 (14) ◽  
pp. 5049-5053 ◽  
Author(s):  
Sira Bencharit ◽  
Mandy J. Ward

ABSTRACT Although a previous study indicated that the dissimilatory metal-reducing bacterium Shewanella oneidensis MR-1 lacks chemotactic responses to metals that can be used as anaerobic electron acceptors, new results show that this bacterium responds to both Mn(III) and Fe(III). Cells were also shown to respond to another unusual electron acceptor, the humic acid analog anthraquinone-2,6-disulfonate. These results indicate that S. oneidensis is capable of moving towards a number of unusual anaerobic electron acceptors, including some that would normally be insoluble in the environment. Additionally, S. oneidensis was shown to migrate in gradients of several divalent cations under anaerobic conditions. Although responses to the reduced forms of redox-active metals, such as Mn(II) and Fe(II), might indicate that S. oneidensis uses gradients of these metals to locate the insoluble electron acceptors Mn(III/IV) and Fe(III) for dissimilatory purposes, responses to non-redox-active metals, such as Zn(II), suggest that movement towards divalent cations might serve other, potentially assimilatory, purposes.


2019 ◽  
Author(s):  
Suryakant Mishra ◽  
Sahand Pirbadian ◽  
Amit Kumar Mondal ◽  
Moh El-Naggar ◽  
Ron Naaman

Multiheme cytochromes, located on the bacterial cell surface, function as long-distance (> 10 nm) electron conduits linking intracellular reactions to external surfaces. This extracellular electron transfer process, which allows microorganisms to gain energy by respiring solid redox-active minerals, also facilitates the wiring of cells to electrodes. While recent studies suggested that a chiral induced spin selectivity effect is linked to efficient electron transmission through biomolecules, this phenomenon has not been investigated in the extracellular electron conduits. Using magnetic conductive probe atomic force microscopy, Hall voltage measurements, and spin-dependent electrochemistry of the decaheme cytochromes MtrF and OmcA from the metal-reducing bacterium <i>Shewanella oneidensis</i> MR-1, we show that electron transport through these extracellular conduits is spin-selective. Our study has implications for understanding how spin-dependent interactions and magnetic fields may control electron transport across biotic-abiotic interfaces in both natural and biotechnological systems.


2006 ◽  
Vol 33 (1) ◽  
pp. 9 ◽  
Author(s):  
Dušan Lazár

Chlorophyll a fluorescence rise caused by illumination of photosynthetic samples by high intensity of exciting light, the O–J–I–P (O–I1–I2–P) transient, is reviewed here. First, basic information about chlorophyll a fluorescence is given, followed by a description of instrumental set-ups, nomenclature of the transient, and samples used for the measurements. The review mainly focuses on the explanation of particular steps of the transient based on experimental and theoretical results, published since a last review on chlorophyll a fluorescence induction [Lazár D (1999) Biochimica et Biophysica Acta 1412, 1–28]. In addition to ‘old’ concepts (e.g. changes in redox states of electron acceptors of photosystem II (PSII), effect of the donor side of PSII, fluorescence quenching by oxidised plastoquinone pool), ‘new’ approaches (e.g. electric voltage across thylakoid membranes, electron transport through the inactive branch in PSII, recombinations between PSII electron acceptors and donors, electron transport reactions after PSII, light gradient within the sample) are reviewed. The K-step, usually detected after a high-temperature stress, and other steps appearing in the transient (the H and G steps) are also discussed. Finally, some applications of the transient are also mentioned.


2001 ◽  
Vol 280 (6) ◽  
pp. L1290-L1299 ◽  
Author(s):  
Said H. Audi ◽  
Robert D. Bongard ◽  
Yoshiyuki Okamoto ◽  
Marilyn P. Merker ◽  
David L. Roerig ◽  
...  

Pulmonary endothelial cells in culture reduce external electron acceptors via transplasma membrane electron transport (TPMET). In studying endothelial TPMET in intact lungs, it is difficult to exclude intracellular reduction and reducing agents released by the lung. Therefore, we evaluated the role of endothelial TPMET in the reduction of a cell-impermeant redox polymer, toluidine blue O polyacrylamide (TBOP+), in intact rat lungs. When added to the perfusate recirculating through the lungs, the venous effluent TBOP+concentration decreased to an equilibrium level reflecting TBOP+ reduction and autooxidation of its reduced (TBOPH) form. Adding superoxide dismutase (SOD) to the perfusate increased the equilibrium TBOP+ concentration. Kinetic analysis indicated that the SOD effect could be attributed to elimination of the superoxide product of TBOPH autooxidation rather than of superoxide released by the lungs, and experiments with lung-conditioned perfusate excluded release of other TBOP+ reductants in sufficient quantities to cause significant TBOP+ reduction. Thus the results indicate that TBOP+ reduction is via TPMET and support the utility of TBOP+ and the kinetic model for investigating TPMET mechanisms and their adaptations to physiological and pathophysiological stresses in the intact lung.


Sign in / Sign up

Export Citation Format

Share Document