insoluble electron acceptors
Recently Published Documents


TOTAL DOCUMENTS

11
(FIVE YEARS 4)

H-INDEX

8
(FIVE YEARS 3)

2019 ◽  
Vol 116 (52) ◽  
pp. 26892-26899 ◽  
Author(s):  
Samuel H. Light ◽  
Raphaël Méheust ◽  
Jessica L. Ferrell ◽  
Jooyoung Cho ◽  
David Deng ◽  
...  

Mineral-respiring bacteria use a process called extracellular electron transfer to route their respiratory electron transport chain to insoluble electron acceptors on the exterior of the cell. We recently characterized a flavin-based extracellular electron transfer system that is present in the foodborne pathogenListeria monocytogenes, as well as many other Gram-positive bacteria, and which highlights a more generalized role for extracellular electron transfer in microbial metabolism. Here we identify a family of putative extracellular reductases that possess a conserved posttranslational flavinylation modification. Phylogenetic analyses suggest that divergent flavinylated extracellular reductase subfamilies possess distinct and often unidentified substrate specificities. We show that flavinylation of a member of the fumarate reductase subfamily allows this enzyme to receive electrons from the extracellular electron transfer system and supportL. monocytogenesgrowth. We demonstrate that this represents a generalizable mechanism by finding that aL. monocytogenesstrain engineered to express a flavinylated extracellular urocanate reductase uses urocanate by a related mechanism and to a similar effect. These studies thus identify an enzyme family that exploits a modular flavin-based electron transfer strategy to reduce distinct extracellular substrates and support a multifunctional view of the role of extracellular electron transfer activities in microbial physiology.


2019 ◽  
Vol 27 (01) ◽  
pp. 51-67
Author(s):  
DEWU DING

Electricigens can transfer electrons that produced in intracellular metabolic processes to cellular surface to restore extracellular insoluble electron acceptors (extracellular electron transfer, EET). To uncover the molecular mechanisms underlying EET processes, we integrated transcriptome changes accompanying such processes with molecular network. Firstly, time-series expression datasets for Shewanella oneidensis MR-1 under limited/changed [Formula: see text] conditions were obtained from the GEO database, and a total of 336 common differentially expressed genes (DEGs) were identified. Then, we constructed the protein–protein interaction (PPI) network that involved in EET processes from these DEGs. Furthermore, by using centralization analysis and community detection, network analysis of the PPI network was performed. Although the fundamental EET genes are similar to previous studies, important new genes have been discovered. Taking together, our study identified many literature-validated genes critical to EET processes, and also proposed some novel genes that were putatively involved in EET processes.


mBio ◽  
2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Joseph Oram ◽  
Lars J. C. Jeuken

ABSTRACTExoelectrogenic bacteria are defined by their ability to respire on extracellular and insoluble electron acceptors and have applications in bioremediation and microbial electrochemical systems (MESs), while playing important roles in biogeochemical cycling.Shewanella oneidensisMR-1, which has become a model organism for the study of extracellular respiration, is known to display taxis toward insoluble electron acceptors, including electrodes. Multiple mechanisms have been proposed for MR-1’s tactic behavior, and, here, we report on the role of electrochemical potential by video microscopy cell tracking experiments in three-electrode electrochemical cells. MR-1 trajectories were determined using a particle tracking algorithm and validated with Shannon’s entropy method. Tactic response by MR-1 in the electrochemical cell was observed to depend on the applied potential, as indicated by the average velocity and density of motile (>4 µm/s) MR-1 close to the electrode (<50 µm). Tactic behavior was observed at oxidative potentials, with a strong switch between the potentials −0.15 to −0.25 V versus the standard hydrogen electrode (SHE), which coincides with the reduction potential of flavins. The average velocity and density of motile MR-1 close to the electrode increased when riboflavin was added (2 µM), but were completely absent in a ΔmtrC/ΔomcAmutant of MR-1. Besides flavin’s function as an electron mediator to support anaerobic respiration on insoluble electron acceptors, we propose that riboflavin is excreted by MR-1 to sense redox gradients in its environment, aiding taxis toward insoluble electron acceptors, including electrodes in MESs.IMPORTANCEPrevious hypotheses of tactic behavior of exoelectrogenic bacteria are based on techniques that do not accurately control the electrochemical potential, such as chemical-in-plug assays or microscopy tracking experiments in two-electrode cells. Here, we have revisited previous experiments and, for the first time, performed microscopy cell-tracking experiments in three-electrode electrochemical cells, with defined electrode potentials. Based on these experiments, taxis toward electrodes is observed to switch at about −0.2 V versus standard hydrogen electrode (SHE), coinciding with the reduction potential of flavins.


2019 ◽  
Vol 5 (1) ◽  
pp. eaat5664 ◽  
Author(s):  
Qianru Wang ◽  
A.-Andrew D. Jones ◽  
Jeffrey A. Gralnick ◽  
Liwei Lin ◽  
Cullen R. Buie

Electrons can be transported from microbes to external insoluble electron acceptors (e.g., metal oxides or electrodes in an electrochemical cell). This process is known as extracellular electron transfer (EET) and has received considerable attention due to its applications in environmental remediation and energy conversion. However, the paucity of rapid and noninvasive phenotyping techniques hinders a detailed understanding of microbial EET mechanisms. Most EET phenotyping techniques assess microorganisms based on their metabolism and growth in various conditions and/or performance in electrochemical systems, which requires large sample volumes and cumbersome experimentation. Here, we use microfluidic dielectrophoresis to show a strong correlation between bacterial EET and surface polarizability. We analyzed surface polarizabilities for wild-type strains and cytochrome-deletion mutants of two model EET microbes,Geobacter sulfurreducensandShewanella oneidensis, and forEscherichia colistrains heterologously expressingS. oneidensisEET pathways in various growth conditions. Dielectrophoretic phenotyping is achieved with small cell culture volumes (~100 μl) in a short amount of time (1 to 2 min per strain). Our work demonstrates that cell polarizability is diminished in response to deletions of crucial outer-membrane cytochromes and enhanced due to additions of EET pathways. Results of this work hold exciting promise for rapid screening of direct EET or other cell envelope phenotypes using cell polarizability as a proxy, especially for microbes difficult to cultivate in laboratory conditions.


2012 ◽  
Vol 40 (6) ◽  
pp. 1167-1177 ◽  
Author(s):  
H. Wayne Harris ◽  
Mohamed Y. El-Naggar ◽  
Kenneth H. Nealson

Shewanella oneidensis MR-1 cells utilize a behaviour response called electrokinesis to increase their speed in the vicinity of IEAs (insoluble electron acceptors), including manganese oxides, iron oxides and poised electrodes [Harris, El-Naggar, Bretschger, Ward, Romine, Obraztsova and Nealson (2010) Proc. Natl. Acad. Sci. U.S.A. 107, 326–331]. However, it is not currently understood how bacteria remain in the vicinity of the IEA and accumulate both on the surface and in the surrounding medium. In the present paper, we provide results indicating that cells that have contacted the IEAs swim faster than those that have not recently made contact. In addition, fast-swimming cells exhibit an enhancement of swimming reversals leading to rapid non-random accumulation of cells on, and adjacent to, mineral particles. We call the observed accumulation near IEAs ‘congregation’. Congregation is eliminated by the loss of a critical gene involved with EET (extracellular electron transport) (cymA, SO_4591) and is altered or eliminated in several deletion mutants of homologues of genes that are involved with chemotaxis or energy taxis in Escherichia coli. These genes include chemotactic signal transduction protein (cheA-3, SO_3207), methyl-accepting chemotaxis proteins with the Cache domain (mcp_cache, SO_2240) or the PAS (Per/Arnt/Sim) domain (mcp_pas, SO_1385). In the present paper, we report studies of S. oneidensis MR-1 that lend some insight into how microbes in this group can ‘sense’ the presence of a solid substrate such as a mineral surface, and maintain themselves in the vicinity of the mineral (i.e. via congregation), which may ultimately lead to attachment and biofilm formation.


2012 ◽  
Vol 46 (5) ◽  
pp. 2813-2820 ◽  
Author(s):  
Rui Li ◽  
James M. Tiedje ◽  
Chichia Chiu ◽  
R. Mark Worden

2009 ◽  
Vol 75 (23) ◽  
pp. 7326-7334 ◽  
Author(s):  
Viatcheslav Fedorovich ◽  
Matthew C. Knighton ◽  
Eulyn Pagaling ◽  
F. Bruce Ward ◽  
Andrew Free ◽  
...  

ABSTRACT Exoelectrogenic bacteria are organisms that can transfer electrons to extracellular insoluble electron acceptors and have the potential to be used in devices such as microbial fuel cells (MFCs). Currently, exoelectrogens have been identified in the Alpha-, Beta-, Gamma- and Deltaproteobacteria, as well as in the Firmicutes and Acidobacteria. Here, we describe use of culture-independent methods to identify two members of the genus Arcobacter in the Epsilon p roteobacteria that are selectively enriched in an acetate-fed MFC. One of these organisms, Arcobacter butzleri strain ED-1, associates with the electrode and rapidly generates a strong electronegative potential as a pure culture when it is supplied with acetate. A mixed-community MFC in which ∼90% of the population is comprised of the two Arcobacter species generates a maximal power density of 296 mW/liter. This demonstration of exoelectrogenesis by strain ED-1 is the first time that this property has been shown for members of this genus.


2005 ◽  
Vol 187 (14) ◽  
pp. 5049-5053 ◽  
Author(s):  
Sira Bencharit ◽  
Mandy J. Ward

ABSTRACT Although a previous study indicated that the dissimilatory metal-reducing bacterium Shewanella oneidensis MR-1 lacks chemotactic responses to metals that can be used as anaerobic electron acceptors, new results show that this bacterium responds to both Mn(III) and Fe(III). Cells were also shown to respond to another unusual electron acceptor, the humic acid analog anthraquinone-2,6-disulfonate. These results indicate that S. oneidensis is capable of moving towards a number of unusual anaerobic electron acceptors, including some that would normally be insoluble in the environment. Additionally, S. oneidensis was shown to migrate in gradients of several divalent cations under anaerobic conditions. Although responses to the reduced forms of redox-active metals, such as Mn(II) and Fe(II), might indicate that S. oneidensis uses gradients of these metals to locate the insoluble electron acceptors Mn(III/IV) and Fe(III) for dissimilatory purposes, responses to non-redox-active metals, such as Zn(II), suggest that movement towards divalent cations might serve other, potentially assimilatory, purposes.


2004 ◽  
Vol 70 (9) ◽  
pp. 5415-5425 ◽  
Author(s):  
Charles R. Myers ◽  
Judith M. Myers

ABSTRACT The mechanisms underlying the use of insoluble electron acceptors by metal-reducing bacteria, such as Shewanella oneidensis MR-1, are currently under intensive study. Current models for shuttling electrons across the outer membrane (OM) of MR-1 include roles for OM cytochromes and the possible excretion of a redox shuttle. While MR-1 is able to release a substance that restores the ability of a menaquinone (MK)-negative mutant, CMA-1, to reduce the humic acid analog anthraquinone-2,6-disulfonate (AQDS), cross-feeding experiments conducted here showed that the substance released by MR-1 restores the growth of CMA-1 on several soluble electron acceptors. Various strains derived from MR-1 also release this substance; these include mutants lacking the OM cytochromes OmcA and OmcB and the OM protein MtrB. Even though strains lacking OmcB and MtrB cannot reduce Fe(III) or AQDS, they still release a substance that restores the ability of CMA-1 to use MK-dependent electron acceptors, including AQDS and Fe(III). Quinone analysis showed that this released substance restores MK synthesis in CMA-1. This ability to restore MK synthesis in CMA-1 explains the cross-feeding results and challenges the previous hypothesis that this substance represents a redox shuttle that facilitates metal respiration.


Sign in / Sign up

Export Citation Format

Share Document