scholarly journals Shewanella oneidensis MR-1 Restores Menaquinone Synthesis to a Menaquinone-Negative Mutant

2004 ◽  
Vol 70 (9) ◽  
pp. 5415-5425 ◽  
Author(s):  
Charles R. Myers ◽  
Judith M. Myers

ABSTRACT The mechanisms underlying the use of insoluble electron acceptors by metal-reducing bacteria, such as Shewanella oneidensis MR-1, are currently under intensive study. Current models for shuttling electrons across the outer membrane (OM) of MR-1 include roles for OM cytochromes and the possible excretion of a redox shuttle. While MR-1 is able to release a substance that restores the ability of a menaquinone (MK)-negative mutant, CMA-1, to reduce the humic acid analog anthraquinone-2,6-disulfonate (AQDS), cross-feeding experiments conducted here showed that the substance released by MR-1 restores the growth of CMA-1 on several soluble electron acceptors. Various strains derived from MR-1 also release this substance; these include mutants lacking the OM cytochromes OmcA and OmcB and the OM protein MtrB. Even though strains lacking OmcB and MtrB cannot reduce Fe(III) or AQDS, they still release a substance that restores the ability of CMA-1 to use MK-dependent electron acceptors, including AQDS and Fe(III). Quinone analysis showed that this released substance restores MK synthesis in CMA-1. This ability to restore MK synthesis in CMA-1 explains the cross-feeding results and challenges the previous hypothesis that this substance represents a redox shuttle that facilitates metal respiration.

2005 ◽  
Vol 187 (14) ◽  
pp. 5049-5053 ◽  
Author(s):  
Sira Bencharit ◽  
Mandy J. Ward

ABSTRACT Although a previous study indicated that the dissimilatory metal-reducing bacterium Shewanella oneidensis MR-1 lacks chemotactic responses to metals that can be used as anaerobic electron acceptors, new results show that this bacterium responds to both Mn(III) and Fe(III). Cells were also shown to respond to another unusual electron acceptor, the humic acid analog anthraquinone-2,6-disulfonate. These results indicate that S. oneidensis is capable of moving towards a number of unusual anaerobic electron acceptors, including some that would normally be insoluble in the environment. Additionally, S. oneidensis was shown to migrate in gradients of several divalent cations under anaerobic conditions. Although responses to the reduced forms of redox-active metals, such as Mn(II) and Fe(II), might indicate that S. oneidensis uses gradients of these metals to locate the insoluble electron acceptors Mn(III/IV) and Fe(III) for dissimilatory purposes, responses to non-redox-active metals, such as Zn(II), suggest that movement towards divalent cations might serve other, potentially assimilatory, purposes.


2012 ◽  
Vol 40 (6) ◽  
pp. 1167-1177 ◽  
Author(s):  
H. Wayne Harris ◽  
Mohamed Y. El-Naggar ◽  
Kenneth H. Nealson

Shewanella oneidensis MR-1 cells utilize a behaviour response called electrokinesis to increase their speed in the vicinity of IEAs (insoluble electron acceptors), including manganese oxides, iron oxides and poised electrodes [Harris, El-Naggar, Bretschger, Ward, Romine, Obraztsova and Nealson (2010) Proc. Natl. Acad. Sci. U.S.A. 107, 326–331]. However, it is not currently understood how bacteria remain in the vicinity of the IEA and accumulate both on the surface and in the surrounding medium. In the present paper, we provide results indicating that cells that have contacted the IEAs swim faster than those that have not recently made contact. In addition, fast-swimming cells exhibit an enhancement of swimming reversals leading to rapid non-random accumulation of cells on, and adjacent to, mineral particles. We call the observed accumulation near IEAs ‘congregation’. Congregation is eliminated by the loss of a critical gene involved with EET (extracellular electron transport) (cymA, SO_4591) and is altered or eliminated in several deletion mutants of homologues of genes that are involved with chemotaxis or energy taxis in Escherichia coli. These genes include chemotactic signal transduction protein (cheA-3, SO_3207), methyl-accepting chemotaxis proteins with the Cache domain (mcp_cache, SO_2240) or the PAS (Per/Arnt/Sim) domain (mcp_pas, SO_1385). In the present paper, we report studies of S. oneidensis MR-1 that lend some insight into how microbes in this group can ‘sense’ the presence of a solid substrate such as a mineral surface, and maintain themselves in the vicinity of the mineral (i.e. via congregation), which may ultimately lead to attachment and biofilm formation.


2017 ◽  
Vol 28 (1-2) ◽  
pp. 84-95
Author(s):  
O. M. Moroz ◽  
S. O. Hnatush ◽  
Ch. I. Bohoslavets ◽  
T. M. Hrytsun’ ◽  
B. M. Borsukevych

Sulfate reducing bacteria, capable to reductive transformation of different nature pollutants, used in biotechnologies of purification of sewage, contaminated by carbon, sulfur, nitrogen and metal compounds. H2S formed by them sediment metals to form of insoluble sulfides. Number of metals can be used by these microorganisms as electron acceptors during anaerobic respiration. Because under the influence of metal compounds observed slowing of bacteria metabolism, selection isolated from technologically modified ecotops resistant to pollutions strains is important task to create a new biotechnologies of purification. That’s why the purpose of this work was to study the influence of potassium dichromate, present in medium, on reduction of sulfate and nitrate ions by sulfate reducing bacteria Desulfovibrio desulfuricans IMV K-6, Desulfovibrio sp. Yav-6 and Desulfovibrio sp. Yav-8, isolated from Yavorivske Lake, to estimate the efficiency of possible usage of these bacteria in technologies of complex purification of environment from dangerous pollutants. Bacteria were cultivated in modified Kravtsov-Sorokin medium without SO42- and FeCl2×4H2O for 10 days. To study the influence of K2Cr2O7 on usage by bacteria SO42- or NO3- cells were seeded to media with Na2SO4×10H2O or NaNO3 and K2Cr2O7 at concentrations of 1.74 mM for total content of electron acceptors in medium 3.47 mM (concentration of SO42- in medium of standard composition). Cells were also seeded to media with 3.47 mM Na2SO4×10H2O, NaNO3 or K2Cr2O7 to investigate their growth in media with SO42-, NO3- or Cr2O72- as sole electron acceptor (control). Biomass was determined by turbidymetric method, content of sulfate, nitrate, dichromate, chromium (III) ions, hydrogen sulfide or ammonia ions in cultural liquid – by spectrophotometric method. It was found that K2Cr2O7 inhibits growth (2.2 and 1.3 times) and level of reduction by bacteria sulfate or nitrate ions (4.2 and 3.0 times, respectively) at simultaneous addition into cultivation medium of 1.74 mM SO42- or NO3- and 1.74 mM Cr2O72-, compared with growth and level of reduction of sulfate or nitrate ions in medium only with SO42- or NO3- as sole electron acceptor. Revealed that during cultivation of bacteria in presence of equimolar amount of SO42- or NO3- and Cr2O72-, last used by bacteria faster, content of Cr3+ during whole period of bacteria cultivation exceeded content H2S or NH4+. K2Cr2O7 in medium has most negative influence on dissimilatory reduction by bacteria SO42- than NO3-, since level of nitrate ions reduction by cells in medium with NO3- and Cr2O72- was a half times higher than level of sulfate ions reduction by it in medium with SO42- and Cr2O72-. The ability of bacteria Desulfovibrio sp. to priority reduction of Cr2O72- and after their exhaustion − NO3- and SO42- in the processes of anaerobic respiration can be used in technologies of complex purification of environment from toxic compounds.


2020 ◽  
Vol 11 (2) ◽  
pp. 170-174
Author(s):  
O. M. Сhaіka ◽  
T. B. Peretyatko

Sulfur-reducing bacteria are promising agents for the development of new methods of wastewater treatment with the removal of ions of heavy metals and organic compounds. Study of the effect of various environmental factors on the growth and sulfidogenic activity of sulfur-reducing bacteria allows one to investigate the adaptability of these microorganisms to stress factors. The paper deals with the effect of рН, different concentrations of elemental sulfur, hydrogen sulfide and presence of various electron acceptors on the growth and sulfidogenic activity of bacteria Desulfuromonas sp. YSDS-3. The calculation of C/S ratio for sulfur-reducing bacteria Desulfuromonas sp. YSDS-3 was made, with the comparison with similar parameters of sulfate-reducing bacteria. In the medium with elemental sulfur, concentration of hydrogen sulfide increased with the concentration of elemental sulfur. Bacteria Desulfuromonas sp. YSDS-3 accumulated their biomass in the most effective way at the concentration of elemental sulfur of 10–100 mM. In the medium with polysulfide form of sulfur at the neutral pH, bacteria produced hydrogen sulfide and accumulated biomass the best. Hydrogen sulfide at the concentration of 3 mM did not inhibit the bacterial growth, but further increase in the hydrogen sulfide concentration inhibited the growth of bacteria. The bacteria did not grow at the hydrogen sulfide concentration of 25 mM and above. As the concentration of elemental sulfur and cell density increases, sulfidogenic activity of the bacteria grows. Presence of two electron acceptors (S and K2Cr2O7, S and MnO2, S and Fe (III)) did not affect the accumulation of biomass of the bacteria Desulfuromonas sp. YSDS-3. However, under such conditions the bacteria accumulated 1.5–2.5 times less hydrogen sulfide than in the test medium. After 12–24 h of cultivation, different concentrations of elemental sulfur had a significant effect on the sulfidogenic activity. However, during 3–16 days of cultivation, the percentage of effect of elemental sulfur concentration decreased to 31%, while the percentage of effect of cell density increased threefold. Presence in the medium of the electron acceptors (Cr (VI), MnO2, Fe (III)) alternative to elemental sulfur led to a significant decrease in the content of hydrogen sulfide produced by sulfur-reducing bacteria.


2009 ◽  
Vol 3 (3) ◽  
pp. 141-158 ◽  
Author(s):  
T. B. Peretyatko ◽  
◽  
A. A. Halushka ◽  
S. P. Gudz ◽  
◽  
...  

2009 ◽  
Vol 84 (5) ◽  
pp. 955-963 ◽  
Author(s):  
Yvonne Sun ◽  
Ruth L. Gustavson ◽  
Nadia Ali ◽  
Karrie A. Weber ◽  
Lacey L. Westphal ◽  
...  

2018 ◽  
Vol 84 (20) ◽  
Author(s):  
Lulu Liu ◽  
Shisheng Li ◽  
Sijing Wang ◽  
Ziyang Dong ◽  
Haichun Gao

ABSTRACT Shewanella oneidensis is an extensively studied bacterium capable of respiring minerals, including a variety of iron ores, as terminal electron acceptors (EAs). Although iron plays an essential and special role in iron respiration of S. oneidensis, little has been done to date to investigate the characteristics of iron transport in this bacterium. In this study, we found that all proteins encoded by the pub-putA-putB cluster for putrebactin (S. oneidensis native siderophore) synthesis (PubABC), recognition-transport of Fe3+-putrebactin across the outer membrane (PutA), and reduction of ferric putrebactin (PutB) are essential to putrebactin-mediated iron uptake. Although homologs of PutA are many, none can function as its replacement, but some are able to work with other bacterial siderophores. We then showed that Fe2+-specific Feo is the other primary iron uptake system, based on the synthetical lethal phenotype resulting from the loss of both iron uptake routes. The role of the Feo system in iron uptake appears to be more critical, as growth is significantly impaired by the absence of the system but not of putrebactin. Furthermore, we demonstrate that hydroxyl acids, especially α-types such as lactate, promote iron uptake in a Feo-dependent manner. Overall, our findings underscore the importance of the ferrous iron uptake system in metal-reducing bacteria, providing an insight into iron homeostasis by linking these two biological processes. IMPORTANCE S. oneidensis is among the first- and the best-studied metal-reducing bacteria, with great potential in bioremediation and biotechnology. However, many questions regarding mechanisms closely associated with those applications, such as iron homeostasis, including iron uptake, export, and regulation, remain to be addressed. Here we show that Feo is a primary player in iron uptake in addition to the siderophore-dependent route. The investigation also resolved a few puzzles regarding the unexpected phenotypes of the putA mutant and lactate-dependent iron uptake. By elucidating the physiological roles of these two important iron uptake systems, this work revealed the breadth of the impacts of iron uptake systems on the biological processes.


mBio ◽  
2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Joseph Oram ◽  
Lars J. C. Jeuken

ABSTRACTExoelectrogenic bacteria are defined by their ability to respire on extracellular and insoluble electron acceptors and have applications in bioremediation and microbial electrochemical systems (MESs), while playing important roles in biogeochemical cycling.Shewanella oneidensisMR-1, which has become a model organism for the study of extracellular respiration, is known to display taxis toward insoluble electron acceptors, including electrodes. Multiple mechanisms have been proposed for MR-1’s tactic behavior, and, here, we report on the role of electrochemical potential by video microscopy cell tracking experiments in three-electrode electrochemical cells. MR-1 trajectories were determined using a particle tracking algorithm and validated with Shannon’s entropy method. Tactic response by MR-1 in the electrochemical cell was observed to depend on the applied potential, as indicated by the average velocity and density of motile (>4 µm/s) MR-1 close to the electrode (<50 µm). Tactic behavior was observed at oxidative potentials, with a strong switch between the potentials −0.15 to −0.25 V versus the standard hydrogen electrode (SHE), which coincides with the reduction potential of flavins. The average velocity and density of motile MR-1 close to the electrode increased when riboflavin was added (2 µM), but were completely absent in a ΔmtrC/ΔomcAmutant of MR-1. Besides flavin’s function as an electron mediator to support anaerobic respiration on insoluble electron acceptors, we propose that riboflavin is excreted by MR-1 to sense redox gradients in its environment, aiding taxis toward insoluble electron acceptors, including electrodes in MESs.IMPORTANCEPrevious hypotheses of tactic behavior of exoelectrogenic bacteria are based on techniques that do not accurately control the electrochemical potential, such as chemical-in-plug assays or microscopy tracking experiments in two-electrode cells. Here, we have revisited previous experiments and, for the first time, performed microscopy cell-tracking experiments in three-electrode electrochemical cells, with defined electrode potentials. Based on these experiments, taxis toward electrodes is observed to switch at about −0.2 V versus standard hydrogen electrode (SHE), coinciding with the reduction potential of flavins.


2016 ◽  
Vol 13 (4) ◽  
pp. 757 ◽  
Author(s):  
Jarod N. Grossman ◽  
Tara F. Kahan

Environmental contextReactions in natural waters such as lakes and streams are thought to be extremely slow in the absence of sunlight (e.g. at night). We demonstrate that in the presence of iron, hydrogen peroxide and certain bacteria (all of which are common in natural waters), certain reactions may occur surprisingly quickly. These findings will help us predict the fate of many compounds, including pollutants, in natural waters at night. AbstractDark Fenton chemistry is an important source of hydroxyl radicals (OH•) in natural waters in the absence of sunlight. Hydroxyl radical production by this process is very slow in many bodies of water, owing to slow reduction and low solubility of FeIII at neutral and near-neutral pH. We have investigated the effects of the iron-reducing bacteria Shewanella oneidensis (SO) on OH• production rates from Fenton chemistry at environmentally relevant hydrogen peroxide (H2O2) and iron concentrations at neutral pH. In the presence of 2.0 × 10–4M H2O2, OH• production rates increased from 1.3 × 10–10 to 2.0 × 10–10Ms–1 in the presence of 7.0 × 106cellsmL–1 SO when iron (at a concentration of 100μM) was in the form of FeII, and from 3.6 × 10–11 to 2.2 × 10–10Ms–1 when iron was in the form of FeIII. This represents rate increases of factors of 1.5 and 6 respectively. We measured OH• production rates at a range of H2O2 concentrations and SO cell densities. Production rates depended linearly on both variables. We also demonstrate that bacteria-assisted Fenton chemistry can result in rapid degradation of aromatic pollutants such as anthracene. Our results suggest that iron-reducing bacteria such as SO may be important contributors to radical formation in dark natural waters.


2009 ◽  
Vol 75 (16) ◽  
pp. 5209-5217 ◽  
Author(s):  
Justin L. Burns ◽  
Thomas J. DiChristina

ABSTRACT Shewanella oneidensis MR-1, a facultatively anaerobic gammaproteobacterium, respires a variety of anaerobic terminal electron acceptors, including the inorganic sulfur compounds sulfite (SO3 2−), thiosulfate (S2O3 2−), tetrathionate (S4O6 2−), and elemental sulfur (S0). The molecular mechanism of anaerobic respiration of inorganic sulfur compounds by S. oneidensis, however, is poorly understood. In the present study, we identified a three-gene cluster in the S. oneidensis genome whose translated products displayed 59 to 73% amino acid similarity to the products of phsABC, a gene cluster required for S0 and S2O3 2− respiration by Salmonella enterica serovar Typhimurium LT2. Homologs of phsA (annotated as psrA) were identified in the genomes of Shewanella strains that reduce S0 and S2O3 2− yet were missing from the genomes of Shewanella strains unable to reduce these electron acceptors. A new suicide vector was constructed and used to generate a markerless, in-frame deletion of psrA, the gene encoding the putative thiosulfate reductase. The psrA deletion mutant (PSRA1) retained expression of downstream genes psrB and psrC but was unable to respire S0 or S2O3 2− as the terminal electron acceptor. Based on these results, we postulate that PsrA functions as the main subunit of the S. oneidensis S2O3 2− terminal reductase whose end products (sulfide [HS−] or SO3 2−) participate in an intraspecies sulfur cycle that drives S0 respiration.


Sign in / Sign up

Export Citation Format

Share Document