mTORC1 regulates CD8+ T-cell glucose metabolism and function independently of PI3K and PKB

2013 ◽  
Vol 41 (2) ◽  
pp. 681-686 ◽  
Author(s):  
David K. Finlay

Given that inflammatory T-cells have a highly glycolytic metabolism, whereas regulatory T-cells rely more on oxidative glucose metabolism, there is growing interest in understanding how T-cell metabolism relates to T-cell function. The mTORC1 (mammalian target of rapamycin complex 1) has a crucial role to determine the balance between effector and regulatory T-cell differentiation, but is also described as a key regulator of metabolism in non-immune cell systems. The present review explores the relationship between these diverse functions of mTORC1 with regard to T-cell function. In many cell systems, mTORC1 couples PI3K (phosphoinositide 3-kinase) and PKB (protein kinase B), also known as Akt, with the control of glucose uptake and glycolysis. However, this is not the case in activated CD8+ CTLs (cytotoxic T-lymphocytes) where PI3K/PKB signalling is dispensable for the elevated levels of glycolysis that is characteristic of activated T-cells. Nevertheless, mTORC1 is still essential for glycolytic metabolism in CD8+ T-cells, and this reflects the fact that mTORC1 does not lie downstream of PI3K/PKB signalling in CD8+ T-cells, as is the case in many other cell systems. mTORC1 regulates glucose metabolism in CTLs through regulating the expression of the transcription factor HIF1α (hypoxia-inducible factor 1α). Strikingly, HIF1α functions to couple mTORC1 with a diverse transcriptional programme that extends beyond the control of glucose metabolism to the regulation of multiple key T-cell functions. The present review discusses the idea that mTORC1/HIF1α signalling integrates the control of T-cell metabolism and T-cell function.

Author(s):  
Fei Li ◽  
Huiling Liu ◽  
Dan Zhang ◽  
Bingdong Zhu

Recent studies have shown that T cell metabolism has become a key regulator of T cell function and even can determine T cell function at last. Naïve T cells use fatty acid oxidation (FAO) to meet their energetic demands. Effector T cells mainly rely on aerobic glycolysis to supply energy and synthesize intermediate products. Similar to naïve T cells, memory T cells primarily utilize FAO for energy. Exhausted T cells, which can be induced by continuous activation of T cells upon persistently chronic infections such as tuberculosis, mainly rely on glycolysis for energy. The prevention and treatment of T cell exhaustion is facing great challenges. Interfering T cell metabolism may achieve the goal of prevention and treatment of T cell exhaustion. In this review, we compiled the researches related to exhausted T cell metabolism and put forward the metabolic intervention strategies to reverse T cell exhaustion at different stages to achieve the purpose of preventing and treating T cell exhaustion.


2010 ◽  
Vol 16 (10) ◽  
pp. 1147-1151 ◽  
Author(s):  
Michael Quigley ◽  
Florencia Pereyra ◽  
Björn Nilsson ◽  
Filippos Porichis ◽  
Catia Fonseca ◽  
...  

2007 ◽  
Vol 81 (6) ◽  
pp. 2940-2949 ◽  
Author(s):  
Adam J. Gehring ◽  
Dianxing Sun ◽  
Patrick T. F. Kennedy ◽  
Esther Nolte-'t Hoen ◽  
Seng Gee Lim ◽  
...  

ABSTRACT CD8 T cells exert their antiviral function through cytokines and lysis of infected cells. Because hepatocytes are susceptible to noncytolytic mechanisms of viral clearance, CD8 T-cell antiviral efficiency against hepatotropic viruses has been linked to their capacity to produce gamma interferon (IFN-γ) and tumor necrosis factor alpha (TNF-α). On the other hand, intrahepatic cytokine production triggers the recruitment of mononuclear cells, which sustain acute and chronic liver damage. Using virus-specific CD8 T cells and human hepatocytes, we analyzed the modulation of virus-specific CD8 T-cell function after recognition peptide-pulsed or virally infected hepatocytes. We observed that hepatocyte antigen presentation was generally inefficient, and the quantity of viral antigen strongly influenced CD8 T-cell antiviral function. High levels of hepatitis B virus production induced robust IFN-γ and TNF-α production in virus-specific CD8 T cells, while limiting amounts of viral antigen, both in hepatocyte-like cells and naturally infected human hepatocytes, preferentially stimulated CD8 T-cell degranulation. Our data document a mechanism where virus-specific CD8 T-cell function is influenced by the quantity of virus produced within hepatocytes.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 840-840
Author(s):  
David M Woods ◽  
Karrune V. Woan ◽  
Eva Sahakian ◽  
John Powers ◽  
Fengdong Cheng ◽  
...  

Abstract Abstract 840 T-cells are an essential component of immune mediated tumor rejection. Adoptive transfer of T-cells results in a durable anti-tumor response in some patients with hematological malignancies. To further improve the efficacy of T-cell adoptive transfers, a better understanding of the regulatory checkpoints of these cells is needed. Here we show that HDAC11 is a negative regulator of CD8+ T-cell function, thus representing a potential target in adoptive immunotherapy. HDACs are a group of enzymes initially known for their role in deacetylating histones, thereby condensing chromatin structure and repressing gene expression. The known roles of HDACs as epigenetic regulators have recently expanded to include more complex regulatory functions including interactions with non-histone targets. HDAC11 is the most recently identified member of the HDAC family, and is highly expressed in brain, testis and T-cells. Recently, our group reported HDAC11 as a regulator of IL-10 production in antigen presenting cells. To determine the role of HDAC11 in T-cell biology, T-cells from HDAC11 knock out (HDAC11KO) mice were compared to wild-type T-cells in number, function and phenotype. HDAC11KO T-cells had no differences in absolute number or percentages of CD4+ or CD8+ lymphocytes. However CD8+ T-cells were hyper-proliferative upon CD3/CD28 stimulation and produced significantly higher levels of the pro-inflammatory, Tc1 cytokines IL-2, INF-γ, and TNF-α. However, no significant increases in the production of the Tc2 cytokines IL-4, IL-6 or IL-10 were seen. Further investigation of phenotypic differences also revealed that HDAC11KO mice have a larger percentage of central memory CD8+ T-cells. Additionally, HDAC11KO CD8+ T-cells express higher levels of the transcription factor Eomes, a known contributor to central memory cell formation as well as a controller of granzyme B and perforin production in CD8+ T-cells. This Tc1 and central memory-like phenotype translated to delayed tumor progression and survival in vivo in C1498 AML bearing mice treated with adoptively transferred HDAC11KO T-cells, as compared with wild type T-cells. Collectively, we have demonstrated HDAC11 as a negative regulator of CD8+ T-cell function, and a novel potential target to augment the efficacy of adoptive T-cell tumor immunotherapy. Disclosures: No relevant conflicts of interest to declare.


2020 ◽  
Vol 222 (9) ◽  
pp. 1540-1549
Author(s):  
Bruktawit A Goshu ◽  
Hui Chen ◽  
Maha Moussa ◽  
Jie Cheng ◽  
Marta Catalfamo

Abstract In chronic HIV infection, virus-specific cytotoxic CD8 T cells showed expression of checkpoint receptors and impaired function. Therefore, restoration of CD8 T-cell function is critical in cure strategies. Here, we show that in vitro blockade of programmed cell death ligand 1 (PD-L1) by an anti-PD-L1 antibody (avelumab) in combination with recombinant human interleukin-15 (rhIL-15) synergistically enhanced cytokine secretion by proliferating HIVGag-specific CD8 T cells. In addition, these CD8 T cells have a CXCR3+PD1−/low phenotype, suggesting a potential to traffic into peripheral tissues. In vitro, proliferating CD8 T cells express PD-L1 suggesting that anti-PD-L1 treatment also targets virus-specific CD8 T cells. Together, these data indicate that rhIL-15/avelumab combination therapy could be a useful strategy to enhance CD8 T-cell function in cure strategies.


2006 ◽  
Vol 80 (13) ◽  
pp. 6333-6338 ◽  
Author(s):  
Vijay Panchanathan ◽  
Geeta Chaudhri ◽  
Gunasegaran Karupiah

ABSTRACT Renewed interest in smallpox and the need for safer vaccines have highlighted our lack of understanding of the requirements for protective immunity. Since smallpox has been eradicated, surrogate animal models of closely related orthopoxviruses, such as ectromelia virus, have been used to establish critical roles for CD8 T cells in the control of primary infection. To study the requirements for protection against secondary infection, we have used a prime-challenge regime, in which avirulent ectromelia virus was used to prime mice that were then challenged with virulent ectromelia virus. In contrast to primary infection, T cells are not required for recovery from secondary infection, since gene knockout mice deficient in CD8 T-cell function and wild-type mice acutely depleted of CD4, CD8, or both subsets were fully protected. Protection correlated with effective virus control and generation of neutralizing antibody. Notably, primed mice that lacked B cells, major histocompatibility complex class II, or CD40 succumbed to secondary infection. Thus, antibody is essential, but CD4 or CD8 T cells are not required for recovery from secondary poxvirus infection.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 3138-3138
Author(s):  
Mark-Alexander Schwarzbich ◽  
Arantxa Romero-Toledo ◽  
John G. Gribben

Abstract Background: Chronic lymphocytic leukaemia (CLL) is associated with global immunodeficiency, hypogammagobulinemia and T-cell exhaustion. We hypothesise that repairing T cell functions would improve cancer immune-editing, improve outcome and decrease infectious complications which cause significant morbidity in CLL patients. Chronic B-cell receptor (BCR) activation as well as close interactions with the tumour microenvironment promote survival of malignant CLL B-cells, supporting their ability to induce immune suppression. To date, the most clinically successful approach to BCR-signalling inhibition is by the use of BTK inhibitors (BTKi). It has been suggested that the BTKi Ibrutinib has the ability to modulate T-helper cell polarity from Th2 to Th1 and thus would be a step towards repairing CLL associated T-cell defects (1). We examined the impact of Ibrutinib on T cell function and immune phenotype in vivo in Eµ-TCL1 mice with CLL. Materials and Methods: C57/Bl6 animals 2.5 months of age were injected with 40x10e6 purified CLL B-cells pooled from Eµ-TCL1 mice with CLL. When peripheral blood CLL load reach >10% animals were randomized (mean day 14) to either vehicle treatment (2% HPBCD) or Ibrutinib treatment (0.15.mg/kg in 2% HPBCD) for 21 days. 17 animals per group were analysed. Splenic cells were isolated, the cellular component characterized by CyTOF and T cell function assessed by multi-parameter flow cytometry and T-cell synapse formation assay. We demonstrated that Ibrutinib administration this way led to high levels of BTK occupancy. Results: Treatment with both Ibrutinib resulted in increased expression of IL2 (p=0.0004) in CD4+ T cells and decreased expression of IL4 among both CD4+ T cells (p=0.0015) and CD8+ T-cells (p<0.0001). Interferon gamma production was reduced in CD4+ (p=0.0056) and CD8+ T-cells (p=0.0020) with Ibrutinib treatment, which also resulted in an increase in CD107a+/CD107a- ratio among both CD44+ (p=0.0002) and CD44- CD8+ cytotoxic T-cells (p=0.0463). Ibrutinib treatment increases T-cell synapse area (p<0.0001) (Figure 1). We find a trend towards less antigen experienced CD44+ T-cells with Ibrutinib treatment with decreased expression of PD-1 in both CD44+ and CD44- negative T-cells but more pronounced in the antigen experienced T-cells. (Figure 2A). In addition, decreased expression of immune checkpoint receptor KLRG-1 on antigen experienced CD44+ T-cells was observed, most pronounced in the CD4+ subsets (Figure 2 B). Among NK 1.1+ NK-cells we find a strong trend towards decreased expression of immune checkpoint receptor KLRG-1 (Figure 2C). In white pulp myelomonocytic splenocytes (WPMC) we find a shift away from Ly6c low macrophage/patrolling monocyte-like cells towards more Ly6C high inflammatory monocyte-like cells. Moreover, we find a trend towards decreased expression of PD-L1, which is highly expressed among Ly6c low cells and shows little to no expression among Ly6C high cells (Figure 2D). Conclusion: In vivo Ibrutinib treatment in this mouse model resulted in alteration in T cell function with cytokine secretion changes in keeping with a switch away from Th2 towards Th1 polarity as well as increased in cytotoxic T-cell function. The typical exhaustion phenotype of T-cell subsets is significantly ameliorated by Ibrutinib including a decrease in PD-1 expression. Moreover, we demonstrate a decrease in numbers of KLRG-1 high NK1.1+ NK cells. WPMC cells are shifted away from a potentially more tumour promoting Ly6C low PD-L1+ phenotype towards a more inflammatory Ly6c high PD-L1 low phenotype. These findings may point to a potential synergism of the combination of BTK inhibitors with immune checkpoint blockade for the treatment of CLL. References Dubovsky JA, Beckwith KA, Natarajan G, Woyach JA, Jaglowski S, Zhong Y, et al. Ibrutinib is an irreversible molecular inhibitor of ITK driving a Th1-selective pressure in T lymphocytes. Blood. 2013;122(15):2539-49. Disclosures Gribben: Cancer Research UK: Research Funding; Celgene: Consultancy, Honoraria, Research Funding; Unum: Equity Ownership; Abbvie: Honoraria; Novartis: Honoraria; TG Therapeutics: Honoraria; Janssen: Honoraria, Research Funding; Acerta Pharma: Honoraria, Research Funding; NIH: Research Funding; Pharmacyclics: Honoraria; Wellcome Trust: Research Funding; Roche: Honoraria; Kite: Honoraria; Medical Research Council: Research Funding.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 916-916
Author(s):  
Michael Quigley ◽  
Florencia Pereyra ◽  
Bjorn Nilsson ◽  
Quentin Eichbaum ◽  
Boris Julg ◽  
...  

Abstract Abstract 916 T cells responding to chronic infections such as HIV lose the ability to secrete cytokines or to proliferate, functions critical for control of viral replication, in a process termed exhaustion. However the molecular mechanisms of T cell exhaustion are not understood, and few therapeutic targets to reinvigorate exhausted T cells have been identified. We therefore conducted a comprehensive genomic analysis of HIV-specific CD8+ T cells to identify the mechanisms underlying defective function in T cell exhaustion. We used Affymetrix microarrays to study gene expression profiles from sorted Gag-specific tetramer+ CD8+ T cells in two cohorts of HIV-infected individuals that differed in their extent of T cell exhaustion: a) Progressors (n=24), who show chronic elevation of viral load and have defects in HIV-specific T cell cytokine secretion, proliferation and survival; and b) Controllers (n=18), who show spontaneous control of viral replication and have relatively good HIV-specific T cell function. Profiles of Gag-specific CD8+ T cells (median 21,500 cells/sample) from progressors showed marked alterations in gene expression compared with those from controllers (n=518 genes upregulated in progressors, moderated t-statistic >2.0). There was highly significant similarity at the whole-genome level between dysfunctional Gag-specific CD8+ T cells from progressors and exhausted CD8+ T cells in the mouse model of chronic LCMV infection (gene set enrichment analysis, P=4.8e−005), suggesting that T cell exhaustion is associated with an evolutionarily conserved program of gene expression. Next, we determined whether this exhausted signature was influenced by inhibitory signaling via the receptor PD-1, an inhibitory receptor known to be upregulated in expression on exhausted T cells. We developed an in vitro model of PD-1 signaling and identified a unique signature of genes upregulated by PD-1 ligation. The signature of PD-1 induced genes was highly significantly upregulated in profiles from Gag-specific CD8+ T cells in HIV progressors compared to controllers (P=5e−006), and in exhausted CD8+ T cells from the LCMV mouse model (P=2e−004). Thus the signature of T cell exhaustion in humans and mice is driven in part by the consequences of PD-1 signaling. Finally, we asked whether the genes upregulated by PD-1 in exhausted T cells directly inhibit T cell function. PD-1 ligation upregulated the transcription factor BATF in HIV-specific CD8+ T cells and in exhausted CD8+ T cells from the mouse model of LCMV infection. Enforced expression of BATF, an inhibitory member of the AP-1 family, in normal human T cells inhibited proliferation (P=0.02) and IL2 secretion (P=4.5e-05). Infection with LCMV in BATF transgenic mice resulted in marked acceleration of T cell exhaustion compared to wild-type animals, indicating that BATF represses T cell effector functions. Silencing of BATF using shRNA in primary human T cells showed that it was required for PD-1 mediated inhibition of T cell function. In summary, our results demonstrate that 1) PD-1 ligation induces a conserved transcriptional program in exhausted HIV-specific CD8+ T cells and in exhausted LCMV-specific CD8+ T cells in the mouse; 2) this transcriptional program includes the upregulation of genes such as BATF that directly inhibit T cell function. Our data suggest that BATF causes the functional defects seen in T cell exhaustion, and represents a new therapeutic target to rescue T cell function in HIV infection. Disclosures: No relevant conflicts of interest to declare.


2009 ◽  
Vol 39 (2) ◽  
pp. 491-506 ◽  
Author(s):  
Jesse Rowley ◽  
Archana Monie ◽  
Chien-Fu Hung ◽  
T.-C. Wu

Sign in / Sign up

Export Citation Format

Share Document