scholarly journals Emerging insights into the mechanistic link between α-synuclein and glucocerebrosidase in Parkinson's disease

2013 ◽  
Vol 41 (6) ◽  
pp. 1509-1512 ◽  
Author(s):  
Ryan P. McGlinchey ◽  
Jennifer C. Lee

Mutations in the GBA1 gene, encoding the enzyme glucocerebrosidase, cause the lysosomal storage disorder GD (Gaucher’s disease), and are associated with the development of PD (Parkinson's disease) and other Lewy body disorders. Interestingly, GBA1 variants are the most common genetic risk factor associated with PD. Although clinical studies argue a strong case towards a link between GBA1 mutations and the development of PD, mechanistic insights have been lacking. In the present article, we review recent findings that have provided some biochemical evidence to bridge this relationship, focusing on the molecular link between two proteins, α-synuclein and glucocerebrosidase, involved in PD and GD respectively.

2021 ◽  
Vol 13 ◽  
Author(s):  
Yu-wen Zhao ◽  
Hong-xu Pan ◽  
Zhenhua Liu ◽  
Yige Wang ◽  
Qian Zeng ◽  
...  

Background: Recent years have witnessed an increasing number of studies indicating an essential role of the lysosomal dysfunction in Parkinson’s disease (PD) at the genetic, biochemical, and cellular pathway levels. In this study, we investigated the association between rare variants in lysosomal storage disorder (LSD) genes and Chinese mainland PD.Methods: We explored the association between rare variants of 69 LSD genes and PD in 3,879 patients and 2,931 controls from Parkinson’s Disease & Movement Disorders Multicenter Database and Collaborative Network in China (PD-MDCNC) using next-generation sequencing, which were analyzed by using the optimized sequence kernel association test.Results: We identified the significant burden of rare putative LSD gene variants in Chinese mainland patients with PD. This association was robust in familial or sporadic early-onset patients after excluding the GBA variants but not in sporadic late-onset patients. The burden analysis of variant sets in genes of LSD subgroups revealed a suggestive significant association between variant sets in genes of sphingolipidosis deficiency disorders and familial or sporadic early-onset patients. In contrast, variant sets in genes of sphingolipidoses, mucopolysaccharidoses, and post-translational modification defect disorders were suggestively associated with sporadic late-onset patients. Then, SMPD1 and other four novel genes (i.e., GUSB, CLN6, PPT1, and SCARB2) were suggestively associated with sporadic early-onset or familial patients, whereas GALNS and NAGA were suggestively associated with late-onset patients.Conclusion: Our findings supported the association between LSD genes and PD and revealed several novel risk genes in Chinese mainland patients with PD, which confirmed the importance of lysosomal mechanisms in PD pathogenesis. Moreover, we identified the genetic heterogeneity in early-onset and late-onset of patients with PD, which may provide valuable suggestions for the treatment.


Brain ◽  
2019 ◽  
Vol 143 (1) ◽  
pp. 234-248 ◽  
Author(s):  
Cornelis Blauwendraat ◽  
Xylena Reed ◽  
Lynne Krohn ◽  
Karl Heilbron ◽  
Sara Bandres-Ciga ◽  
...  

Abstract Parkinson’s disease is a genetically complex disorder. Multiple genes have been shown to contribute to the risk of Parkinson’s disease, and currently 90 independent risk variants have been identified by genome-wide association studies. Thus far, a number of genes (including SNCA, LRRK2, and GBA) have been shown to contain variability across a spectrum of frequency and effect, from rare, highly penetrant variants to common risk alleles with small effect sizes. Variants in GBA, encoding the enzyme glucocerebrosidase, are associated with Lewy body diseases such as Parkinson’s disease and Lewy body dementia. These variants, which reduce or abolish enzymatic activity, confer a spectrum of disease risk, from 1.4- to >10-fold. An outstanding question in the field is what other genetic factors that influence GBA-associated risk for disease, and whether these overlap with known Parkinson’s disease risk variants. Using multiple, large case-control datasets, totalling 217 165 individuals (22 757 Parkinson’s disease cases, 13 431 Parkinson’s disease proxy cases, 622 Lewy body dementia cases and 180 355 controls), we identified 1691 Parkinson’s disease cases, 81 Lewy body dementia cases, 711 proxy cases and 7624 controls with a GBA variant (p.E326K, p.T369M or p.N370S). We performed a genome-wide association study and analysed the most recent Parkinson’s disease-associated genetic risk score to detect genetic influences on GBA risk and age at onset. We attempted to replicate our findings in two independent datasets, including the personal genetics company 23andMe, Inc. and whole-genome sequencing data. Our analysis showed that the overall Parkinson’s disease genetic risk score modifies risk for disease and decreases age at onset in carriers of GBA variants. Notably, this effect was consistent across all tested GBA risk variants. Dissecting this signal demonstrated that variants in close proximity to SNCA and CTSB (encoding cathepsin B) are the most significant contributors. Risk variants in the CTSB locus were identified to decrease mRNA expression of CTSB. Additional analyses suggest a possible genetic interaction between GBA and CTSB and GBA p.N370S induced pluripotent cell-derived neurons were shown to have decreased cathepsin B expression compared to controls. These data provide a genetic basis for modification of GBA-associated Parkinson’s disease risk and age at onset, although the total contribution of common genetics variants is not large. We further demonstrate that common variability at genes implicated in lysosomal function exerts the largest effect on GBA associated risk for disease. Further, these results have implications for selection of GBA carriers for therapeutic interventions.


2019 ◽  
Vol 6 (11) ◽  
pp. 2205-2211 ◽  
Author(s):  
Yutaro Obara ◽  
Hidenori Sato ◽  
Takahiro Nakayama ◽  
Takeo Kato ◽  
Kuniaki Ishii

2016 ◽  
Vol 629 ◽  
pp. 160-164 ◽  
Author(s):  
David Crosiers ◽  
Aline Verstraeten ◽  
Eline Wauters ◽  
Sebastiaan Engelborghs ◽  
Karin Peeters ◽  
...  

2020 ◽  
Author(s):  
Kathryn A. Jewett ◽  
Ruth E. Thomas ◽  
Chi Q. Phan ◽  
Gillian Milstein ◽  
Selina Yu ◽  
...  

AbstractAbnormal protein aggregation within neurons is a key pathologic feature of Parkinson’s disease (PD). The spread of protein aggregates in the brain is associated with clinical disease progression, but how this occurs remains unclear. Mutations in the gene glucosidase, beta acid 1 (GBA), which encodes the lysosomal enzyme glucocerebrosidase (GCase), are the most penetrant common genetic risk factor for PD and dementia with Lewy bodies, and also associate with faster disease progression. To explore the mechanism by which mutations in GBA influence pathogenesis of these diseases, we previously created a Drosophila model of GBA deficiency (Gba1b) that manifests neurodegeneration, motor and cognitive deficits, and accelerated protein aggregation. Proteomic analysis of Gba1b mutants revealed dysregulation of proteins involved in extracellular vesicle (EV) biology, and we found altered protein composition of EVs from Gba1b mutants. To further investigate this novel mechanism, we hypothesized that GBA may influence the spread of pathogenic protein aggregates throughout the brain via EVs. We found that protein aggregation is reduced cell-autonomously and non-cell-autonomously by expressing wildtype GCase in specific tissues. In particular, accumulation of insoluble ubiquitinated proteins and Ref(2)P in the brains of Gba1b flies are reduced by ectopic expression of GCase in muscle tissue. Neuronal expression of GCase also cell-autonomously rescued protein aggregation in brain as well as non-cell-autonomously rescued protein aggregation in muscle. Muscle-specific GBA expression rescued the elevated levels of EV-intrinsic proteins and Ref(2)P found in EVs from Gba1b flies. Genetically perturbing EV biogenesis in specific tissues in the absence of GCase revealed differential cell-autonomous effects on protein aggregation but could not replicate the non-cell-autonomous rescue observed with tissue-specific GBA expression. Additionally, we identified ectopically expressed GCase within isolated EVs. Together, our findings suggest that GCase deficiency mediates accelerated spread of protein aggregates between cells and tissues via dysregulated EVs, and EV-mediated trafficking of GCase may partially account for the reduction in aggregate spread.Author’s SummaryParkinson’s disease (PD) is a common neurodegenerative disease characterized by abnormal clumps of proteins (aggregates) within the brain and other tissues which can lead to cellular dysfunction and death. Mutations in the gene GBA, which encodes glucocerebrosidase (GCase), are the strongest genetic risk factor for PD, and are associated with faster disease progression. GCase-deficient mutant flies display features suggestive of PD including increased protein aggregation in brain and muscle. We found that restoring GCase protein in the muscle of mutant flies reduced protein aggregation in muscle and the brain, suggesting a mechanism involving interaction between tissues. Previous work indicated that GBA influences extracellular vesicles (EVs) – small membrane-bound structures released by cells to communicate and/or transport cargo from cell to cell. Here, we found increased aggregated proteins within EVs of mutant flies, which was reduced by restoring GCase in muscle. In addition, we found GCase within the EVs, possibly explaining how GCase in one tissue such as muscle could reduce protein aggregation in a distant tissue like the brain. Our findings suggest that GCase influences proteins within EVs, affecting the spread of protein aggregation. This may be important to understanding PD progression and could uncover new targets to slow neurodegeneration.


Brain ◽  
2017 ◽  
Vol 140 (12) ◽  
pp. 3191-3203 ◽  
Author(s):  
Laurie A Robak ◽  
Iris E Jansen ◽  
Jeroen van Rooij ◽  
André G Uitterlinden ◽  
Robert Kraaij ◽  
...  

Cells ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 2399
Author(s):  
Alba Navarro-Romero ◽  
Marta Montpeyó ◽  
Marta Martinez-Vicente

Lysosomal function has a central role in maintaining neuronal homeostasis, and, accordingly, lysosomal dysfunction has been linked to neurodegeneration and particularly to Parkinson’s disease (PD). Lysosomes are the converging step where the substrates delivered by autophagy and endocytosis are degraded in order to recycle their primary components to rebuild new macromolecules. Genetic studies have revealed the important link between the lysosomal function and PD; several of the autosomal dominant and recessive genes associated with PD as well as several genetic risk factors encode for lysosomal, autophagic, and endosomal proteins. Mutations in these PD-associated genes can cause lysosomal dysfunction, and since α-synuclein degradation is mostly lysosomal-dependent, among other consequences, lysosomal impairment can affect α-synuclein turnover, contributing to increase its intracellular levels and therefore promoting its accumulation and aggregation. Recent studies have also highlighted the bidirectional link between Parkinson’s disease and lysosomal storage diseases (LSD); evidence includes the presence of α-synuclein inclusions in the brain regions of patients with LSD and the identification of several lysosomal genes involved in LSD as genetic risk factors to develop PD.


2020 ◽  
Author(s):  
Francis P. Grenn ◽  
Anni Moore ◽  
Sara Bandres-Ciga ◽  
Lynne Krohn ◽  
Cornelis Blauwendraat

AbstractGenetic risk factors are occasionally shared between different neurodegenerative diseases. Previous studies have linked ANG, a gene encoding angiogenin, to both Parkinson’s disease (PD) and amyotrophic lateral sclerosis (ALS). Functional studies suggest ANG plays a neuroprotective role in both PD and ALS by reducing cell death. We further explored the genetic association between ANG and PD by analyzing genotype data from the International Parkinson’s Disease Genomics Consortium (IPDGC) (14,671 cases and 17,667 controls) and whole genome sequencing (WGS) data from the Accelerating Medicines Partnership - Parkinson’s disease initiative (AMP-PD, https://amp-pd.org/) (1,647 cases and 1,050 controls). Our analysis did not replicate the findings of previous studies and found no significant association between ANG variants and PD risk.


Sign in / Sign up

Export Citation Format

Share Document