Making the cut(s): how Cas12a cleaves target and non-target DNA

2019 ◽  
Vol 47 (5) ◽  
pp. 1499-1510 ◽  
Author(s):  
Daan C. Swarts

Abstract CRISPR–Cas12a (previously named Cpf1) is a prokaryotic deoxyribonuclease that can be programmed with an RNA guide to target complementary DNA sequences. Upon binding of the target DNA, Cas12a induces a nick in each of the target DNA strands, yielding a double-stranded DNA break. In addition to inducing cis-cleavage of the targeted DNA, target DNA binding induces trans-cleavage of non-target DNA. As such, Cas12a–RNA guide complexes can provide sequence-specific immunity against invading nucleic acids such as bacteriophages and plasmids. Akin to CRISPR–Cas9, Cas12a has been repurposed as a genetic tool for programmable genome editing and transcriptional control in both prokaryotic and eukaryotic cells. In addition, its trans-cleavage activity has been applied for high-sensitivity nucleic acid detection. Despite the demonstrated value of Cas12a for these applications, the exact molecular mechanisms of both cis- and trans-cleavage of DNA were not completely understood. Recent studies have revealed mechanistic details of Cas12a-mediates DNA cleavage: base pairing of the RNA guide and the target DNA induces major conformational changes in Cas12a. These conformational changes render Cas12a in a catalytically activated state in which it acts as deoxyribonuclease. This deoxyribonuclease activity mediates cis-cleavage of the displaced target DNA strand first, and the RNA guide-bound target DNA strand second. As Cas12a remains in the catalytically activated state after cis-cleavage, it subsequently demonstrates trans-cleavage of non-target DNA. Here, I review the mechanistic details of Cas12a-mediated cis- and trans-cleavage of DNA. In addition, I discuss how bacteriophage-derived anti-CRISPR proteins can inhibit Cas12a activity.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Bo Zhang ◽  
Diyin Luo ◽  
Yu Li ◽  
Vanja Perčulija ◽  
Jing Chen ◽  
...  

AbstractCas12i is a newly identified member of the functionally diverse type V CRISPR-Cas effectors. Although Cas12i has the potential to serve as genome-editing tool, its structural and functional characteristics need to be investigated in more detail before effective application. Here we report the crystal structures of the Cas12i1 R-loop complexes before and after target DNA cleavage to elucidate the mechanisms underlying target DNA duplex unwinding, R-loop formation and cis cleavage. The structure of the R-loop complex after target DNA cleavage also provides information regarding trans cleavage. Besides, we report a crystal structure of the Cas12i1 binary complex interacting with a pseudo target oligonucleotide, which mimics target interrogation. Upon target DNA duplex binding, the Cas12i1 PAM-interacting cleft undergoes a remarkable open-to-closed adjustment. Notably, a zipper motif in the Helical-I domain facilitates unzipping of the target DNA duplex. Formation of the 19-bp crRNA-target DNA strand heteroduplex in the R-loop complexes triggers a conformational rearrangement and unleashes the DNase activity. This study provides valuable insights for developing Cas12i1 into a reliable genome-editing tool.


2021 ◽  
Author(s):  
Martin Pacesa ◽  
Martin Jinek

Cas9 is a CRISPR-associated endonuclease capable of RNA-guided, site-specific DNA cleavage. The programmable activity of Cas9 has been widely utilized for genome editing applications. Despite extensive studies, the precise mechanism of target DNA binding and on-/off-target discrimination remains incompletely understood. Here we report cryo-EM structures of intermediate binding states of Streptococcus pyogenes Cas9 that reveal domain rearrangements induced by R-loop propagation and PAM-distal duplex positioning. At early stages of binding, the Cas9 REC2 and REC3 domains form a positively charged cleft that accommodates the PAM-distal duplex of the DNA substrate. Target hybridisation past the seed region positions the guide-target heteroduplex into the central binding channel and results in a conformational rearrangement of the REC lobe. Extension of the R-loop to 16 base pairs triggers the relocation of the HNH domain towards the target DNA strand in a catalytically incompetent conformation. The structures indicate that incomplete target strand pairing fails to induce the conformational displacements necessary for nuclease domain activation. Our results establish a structural basis for target DNA-dependent activation of Cas9 that advances our understanding of its off-target activity and will facilitate the development of novel Cas9 variants and guide RNA designs with enhanced specificity and activity.


2020 ◽  
Author(s):  
Renjian Xiao ◽  
Zhuang Li ◽  
Shukun Wang ◽  
Ruijie Han ◽  
Leifu Chang

ABSTRACTCas12f, also known as Cas14, is an exceptionally small type V-F CRISPR-Cas nuclease that is roughly half the size of comparable nucleases of this type. To reveal the mechanisms underlying substrate recognition and cleavage, we determined the cryo-EM structures of the Cas12f-sgRNA-target DNA and Cas12f-sgRNA complexes at 3.1 Å and 3.9 Å, respectively. An asymmetric Cas12f dimer is bound to one sgRNA for recognition and cleavage of dsDNA substrate with a T-rich PAM sequence. Despite its dimerization, Cas12f adopts a conserved activation mechanism among the type V nucleases which requires coordinated conformational changes induced by the formation of the crRNA-target DNA heteroduplex, including the close-to-open transition in the lid motif of the RuvC domain. Only one RuvC domain in the Cas12f dimer is activated by substrate recognition, and the substrate bound to the activated RuvC domain is captured in the structure. Structure-assisted truncated sgRNA, which is less than half the length of the original sgRNA, is still active for target DNA cleavage. Our results expand our understanding of the diverse type V CRISPR-Cas nucleases and facilitate potential genome editing applications using the miniature Cas12f.


2012 ◽  
Vol 45 (4) ◽  
pp. 493-521 ◽  
Author(s):  
Fred Dyda ◽  
Michael Chandler ◽  
Alison Burgess Hickman

AbstractDNA transposases are enzymes that catalyze the movement of discrete pieces of DNA from one location in the genome to another. Transposition occurs through a series of controlled DNA strand cleavage and subsequent integration reactions that are carried out by nucleoprotein complexes known as transpososomes. Transpososomes are dynamic assemblies which must undergo conformational changes that control DNA breaks and ensure that, once started, the transposition reaction goes to completion. They provide a precise architecture within which the chemical reactions involved in transposon movement occur, but adopt different conformational states as transposition progresses. Their components also vary as they must, at some stage, include target DNA and sometimes even host-encoded proteins. A very limited number of transpososome states have been crystallographically captured, and here we provide an overview of the various structures determined to date. These structures include examples of DNA transposases that catalyze transposition by a cut-and-paste mechanism using an RNaseH-like nuclease catalytic domain, those that transpose using only single-stranded DNA substrates and targets, and the retroviral integrases that carry out an integration reaction very similar to DNA transposition. Given that there are a number of common functional requirements for transposition, it is remarkable how these are satisfied by complex assemblies that are so architecturally different.


2019 ◽  
Author(s):  
Guanhua Xun ◽  
Qian Liu ◽  
Yuesheng Chong ◽  
Zhonglei Li ◽  
Xiang Guo ◽  
...  

AbstractThermophilic Argonaute proteins (Agos) can function as endonucleases via specific guide-target base-pairing cleavage for host defense. The ability to cleave target DNA sequences at any arbitrary sites endows them with reprogramed DNA capacity. Here, we identify that an Ago from the hyperthermophilic archaeon Pyrococcus furiosus (PfAgo) shows a stepwise endonuclease activity, which is demonstrated by the double strand DNA cleavage directed by a single guide DNA rather than canonical one pair of guide DNAs. We reveal that the cleavage products with 5’-phosphorylated ends can used as the renewed guide which is capable to induce next round of cleavage to complementary sequences of target DNA. By combining the PfAgo stepwise endonuclease activity followed by target DNA amplification, we establish a rapid and specific platform for the unambiguously multiplex gene detection, termed RADAR (Renewed-gDNA Assisted DNA-cleavage by Argonaute). In the end, RADAR was applied to distinguish of human papillomavirus of serotypes in patient samples in a single reaction, suggesting that our technique would be adopted for diagnosing application.


2018 ◽  
Author(s):  
Daan C. Swarts ◽  
Martin Jinek

HIGHLIGHTSTarget ssDNA binding allosterically induces unblocking of the RuvC active sitePAM binding facilitates unwinding of dsDNA targetsNon-target DNA strand cleavage is prerequisite for target DNA strand cleavageAfter DNA cleavage, Cas12a releases the PAM-distal DNA productSUMMARYCRISPR-Cas12a (Cpf1) is an RNA-guided DNA-cutting nuclease that has been repurposed for genome editing. Upon target DNA binding, Cas12a cleaves both the target DNA incisand non-target single stranded DNAs (ssDNA) intrans.To elucidate the molecular basis for both deoxyribonuclease cleavage modes, we performed structural and biochemical studies onFrancisella novicidaCas12a. We show how crRNA-target DNA strand hybridization conformationally activates Cas12a, triggering itstrans-acting, non-specific, single-stranded deoxyribonuclease activity. In turn,cis-cleavage of double-stranded DNA targets is a result of PAM-dependent DNA duplex unwinding and ordered sequential cleavage of the non-target and target DNA strands. Cas12a releases the PAM-distal DNA cleavage product and remains bound to the PAM-proximal DNA cleavage product in a catalytically competent,trans-active state. Together, these results provide a revised model for the molecular mechanism of Cas12a enzymes that explains theircis- andtrans-acting deoxyribonuclease activities, and additionally contribute to improving Cas12a-based genome editing.


2017 ◽  
Author(s):  
Stefano Stella ◽  
Pablo Alcón ◽  
Guillermo Montoya

AbstractCpf1 is a single RNA-guided endonuclease of class 2 type V CRISPR-Cas system, emerging as a powerful genome editing tool 1,2. To provide insight into its DNA targeting mechanism, we have determined the crystal structure of Francisella novicida Cpf1 (FnCpf1) in complex with the triple strand R-loop formed after target DNA cleavage. The structure reveals a unique machinery for target DNA unwinding to form a crRNA-DNA hybrid and a displaced DNA strand inside FnCpf1. The protospacer adjacent motif (PAM) is recognised by the PAM interacting (PI) domain. In this domain, the conserved K667, K671 and K677 are arranged in a dentate manner in a loop-lysine helix-loop motif (LKL). The helix is inserted at a 45° angle to the dsDNA longitudinal axis. Unzipping of the dsDNA in a cleft arranged by acidic and hydrophobic residues facilitates the hybridization of the target DNA strand with crRNA. K667 initiates unwinding by pushing away the guanine after the PAM sequence of the dsDNA. The PAM ssDNA is funnelled towards the nuclease site, which is located 70 Å away, through a hydrophobic protein cavity with basic patches that interact with the phosphate backbone. In this catalytically active conformation the PI and the helix-loop-helix (HLH) motif in the REC1 domain adopt a “rail shape” and “flap-on” conformations, channelling the PAM strand into the cavity. A steric barrier between the RuvC-II and REC1 domains forms a “septum” that separates the displaced PAM strand and the crRNA-DNA hybrid, avoiding re-annealing of the DNA. Mutations in key residues reveal a novel mechanism to determine the DNA product length, thereby linking the PAM and DNAase sites. Our study reveals a singular working model of RNA-guided DNA cleavage by Cpf1, opening up new avenues for engineering this genome modification system2-4.


2015 ◽  
Vol 112 (10) ◽  
pp. 2984-2989 ◽  
Author(s):  
Addison V. Wright ◽  
Samuel H. Sternberg ◽  
David W. Taylor ◽  
Brett T. Staahl ◽  
Jorge A. Bardales ◽  
...  

Cas9, an RNA-guided DNA endonuclease found in clustered regularly interspaced short palindromic repeats (CRISPR) bacterial immune systems, is a versatile tool for genome editing, transcriptional regulation, and cellular imaging applications. Structures of Streptococcus pyogenes Cas9 alone or bound to single-guide RNA (sgRNA) and target DNA revealed a bilobed protein architecture that undergoes major conformational changes upon guide RNA and DNA binding. To investigate the molecular determinants and relevance of the interlobe rearrangement for target recognition and cleavage, we designed a split-Cas9 enzyme in which the nuclease lobe and α-helical lobe are expressed as separate polypeptides. Although the lobes do not interact on their own, the sgRNA recruits them into a ternary complex that recapitulates the activity of full-length Cas9 and catalyzes site-specific DNA cleavage. The use of a modified sgRNA abrogates split-Cas9 activity by preventing dimerization, allowing for the development of an inducible dimerization system. We propose that split-Cas9 can act as a highly regulatable platform for genome-engineering applications.


2017 ◽  
Vol 114 (5) ◽  
pp. E669-E678 ◽  
Author(s):  
Emilien Nicolas ◽  
Cédric A. Oger ◽  
Nathan Nguyen ◽  
Michaël Lambin ◽  
Amandine Draime ◽  
...  

The Tn3 family is a widespread group of replicative transposons that are notorious for their contribution to the dissemination of antibiotic resistance and the emergence of multiresistant pathogens worldwide. The TnpA transposase of these elements catalyzes DNA breakage and rejoining reactions required for transposition. It also is responsible for target immunity, a phenomenon that prevents multiple insertions of the transposon into the same genomic region. However, the molecular mechanisms whereby TnpA acts in both processes remain unknown. Here, we have developed sensitive biochemical assays for the TnpA transposase of the Tn3-family transposon Tn4430 and used these assays to characterize previously isolated TnpA mutants that are selectively affected in immunity. Compared with wild-type TnpA, these mutants exhibit deregulated activities. They spontaneously assemble a unique asymmetric synaptic complex in which one TnpA molecule simultaneously binds two transposon ends. In this complex, TnpA is in an activated state competent for DNA cleavage and strand transfer. Wild-type TnpA can form this complex only on precleaved ends mimicking the initial step of transposition. The data suggest that transposition is controlled at an early stage of transpososome assembly, before DNA cleavage, and that mutations affecting immunity have unlocked TnpA by stabilizing the protein in a monomeric activated synaptic configuration. We propose an asymmetric pathway for coupling active transpososome assembly with proper target recruitment and discuss this model with respect to possible immunity mechanisms.


2018 ◽  
Author(s):  
Katarzyna M. Soczek ◽  
Tim Grant ◽  
Peter B. Rosenthal ◽  
Alfonso Mondragon

AbstractGyrase is a unique type IIA topoisomerase that uses ATP hydrolysis to maintain the negatively supercoiled state of bacterial DNA. In order to perform its function, gyrase undergoes a sequence of conformational changes that consist of concerted gate openings, DNA cleavage, and DNA strand passage events. Structures where the transported DNA molecule (T-segment) is trapped by the A subunit have not been observed. Here we present the cryoEM structures of two oligomeric complexes of open gyrase A dimers and DNA. The protein subunits in these complexes were solved to 4 Å and 5.16 Å resolution. One of the complexes traps a linear DNA molecule, a putative T-segment, which interacts with the open gyrase A dimers in two states, representing steps either prior to or after passage through the DNA-gate. The structures locate the T-segment in important intermediate conformations of the catalytic cycle and provide insights into gyrase-DNA interactions and mechanism.


Sign in / Sign up

Export Citation Format

Share Document