strand passage
Recently Published Documents


TOTAL DOCUMENTS

62
(FIVE YEARS 11)

H-INDEX

18
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Sanjana Sundararajan ◽  
Hyewon Park ◽  
Shinji Kawano ◽  
Marnie Johansson ◽  
Tomoko Saito-Fujita ◽  
...  

Due to the intrinsic nature of DNA replication, replicated genomes retain catenated genomic loci that must be resolved to ensure faithful segregation of sister chromatids in mitosis. Type II DNA Topoisomerase (TopoII) decatenates the catenated genomic DNA through its unique Strand Passage Reaction (SPR). Loss of SPR activity results in anaphase chromosome bridges and formation of Polo-like Kinase Interacting Checkpoint Helicase (PICH)-coated ultra-fine DNA bridges (UFBs) whose timely resolution is required to prevent micronuclei formation. Vertebrates have two TopoII isoforms– TopoIIα and TopoIIβ, that share a conserved catalytic core. However, the essential mitotic function of TopoIIα cannot be compensated by TopoIIβ, due to differences in their catalytically inert C-terminal domains (CTDs). Using genome-edited human cells, we show that specific binding of TopoIIα to methylated histone, tri-methylated H3K27 (H3K27me3), via its Chromatin Tether (ChT) domain within the CTD contributes critically to avoid anaphase UFB formation. Reducing H3K27 methylation prior to mitosis increases UFBs, revealing a requirement for proper establishment of H3K27me3 after DNA replication to facilitate TopoIIα-ChT dependent UFB prevention. We propose that interaction of the TopoIIα-ChT with H3K27me3 is a key factor that ensures the complete resolution of catenated loci to permit faithful chromosome segregation in human cells.


2021 ◽  
Author(s):  
Shannon J. McKie ◽  
Parth Desai ◽  
Yeonee Seol ◽  
Anthony Maxwell ◽  
Keir Neuman

AbstractDNA topoisomerase VI (topo VI) is a type IIB DNA topoisomerase found predominantly in archaea and some bacteria, but also in plants and algae. Since its discovery, topo VI has been proposed to be a DNA decatenase, however robust evidence and a mechanism for its preferential decatenation activity was lacking. Using single-molecule magnetic tweezers measurements and supporting ensemble biochemistry, we demonstrate that Methanosarcina mazei topo VI preferentially unlinks, or decatenates, DNA crossings, in comparison to relaxing supercoils, through a preference for certain DNA crossing geometries. In addition, topo VI demonstrates a dramatic increase in ATPase activity, DNA binding and rate of strand passage, with increasing DNA writhe, providing further evidence that topo VI is a DNA crossing sensor. Our study strongly suggests that topo VI has evolved an intrinsic preference for the unknotting and decatenation of interlinked chromosomes by sensing and preferentially unlinking DNA crossings with geometries close to 90°.


2021 ◽  
Author(s):  
Paul Kaminski ◽  
Shiyuan Hong ◽  
Takeyuki Kono ◽  
Paul Hoover ◽  
Laimonis A. Laimins

Topoisomerases regulate higher order chromatin structures through the transient breaking and re-ligating of one or both strands of the phosphodiester backbone of duplex DNA. TOP2b is a type II topoisomerase that induces double strand DNA breaks at topological-associated domains (TADS) to relieve torsional stress arising during transcription or replication. TADS are anchored by CTCF and SMC1 cohesin proteins in complexes with TOP2b. Upon DNA cleavage a covalent intermediate DNA-TOP2b (TOP2bcc) is transiently generated to allow for strand passage. The tyrosyl-DNA phosphodiesterase TDP2 can resolve TOP2bcc but failure to do so quickly can lead to long-lasting DNA breaks. Given the role of CTCF/SMC1 proteins in the HPV life cycle we investigated if TOP2b proteins contribute to HPV pathogenesis. Our studies demonstrated that levels of both TOP2b and TDP2 were substantially increased in cells with high risk HPV genomes and this correlated with high amounts of DNA breaks. Knockdown of TOP2b with shRNAs reduced DNA breaks by over 50% as determined through COMET assays.  Furthermore this correlated with substantially reduced formation of repair foci such as gH2AX, pCHK1 and pSMC1 indicative of impaired activation of DNA damage repair pathways. Importantly, knockdown of TOP2b also blocked HPV genome replication. Our previous studies demonstrated that CTCF /SMC1 factors associate with HPV genomes at sites in the late regions of HPV31 and these correspond to regions that also bind TOP2b. This study identifies TOP2b as responsible for enhanced levels of DNA breaks in HPV positive cells and as a regulator of viral replication.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Mary Miyaji ◽  
Ryohei Furuta ◽  
Osamu Hosoya ◽  
Kuniaki Sano ◽  
Norikazu Hara ◽  
...  

Abstract Type II DNA topoisomerases (topo II) flip the spatial positions of two DNA duplexes, called G- and T- segments, by a cleavage-passage-resealing mechanism. In living cells, these DNA segments can be derived from distant sites on the same chromosome. Due to lack of proper methodology, however, no direct evidence has been described so far. The beta isoform of topo II (topo IIβ) is essential for transcriptional regulation of genes expressed in the final stage of neuronal differentiation. Here we devise a genome-wide mapping technique (eTIP-seq) for topo IIβ target sites that can measure the genomic distance between G- and T-segments. It revealed that the enzyme operates in two distinctive modes, termed proximal strand passage (PSP) and distal strand passage (DSP). PSP sites are concentrated around transcription start sites, whereas DSP sites are heavily clustered in small number of hotspots. While PSP represent the conventional topo II targets that remove local torsional stresses, DSP sites have not been described previously. Most remarkably, DSP is driven by the pairing between homologous sequences or repeats located in a large distance. A model-building approach suggested that topo IIβ acts on crossovers to unknot the intertwined DSP sites, leading to chromatin decondensation.


Author(s):  
Filipe Tavares-Cadete ◽  
Davood Norouzi ◽  
Bastiaan Dekker ◽  
Yu Liu ◽  
Job Dekker

SUMMARYThe genome is organized into chromosome territories that are themselves spatially segregated in A and B compartments. The extent to which interacting compartment domains and chromosomes are topologically entangled is not known. We show that detection of series of co-occurring chromatin interactions using multi-contact 3C (MC-3C) reveals insights into the topological entanglement of compartment domains and territories. We find that series of co-occurring interactions and their order represent interaction percolation paths through nuclear space in single cells where fragment 1 interacts with fragment 2, which in turn interacts with fragment 3 and so on. Analysis of paths that cross two chromosome territories revealed very little mixing of chromatin from the two chromosomes. Similarly, paths that cross compartment domains show that loci from interacting domains do not mix. Polymer simulations show that such paths are consistent with chromosomes and compartment domains behaving as topologically closed polymers that are not catenated with one another. Simulations show that even low levels of random strand passage, e.g. through topoisomerase II activity, would result in entanglements and mixing of loci of different chromosomes and compartment domains with concomitant changes in interaction paths inconsistent with MC-3C data. Our results show that cells maintain a largely unentangled state of chromosomes and compartment domains.


2020 ◽  
Vol 48 (4) ◽  
pp. 2035-2049
Author(s):  
Matthew J Hobson ◽  
Zev Bryant ◽  
James M Berger

Abstract Negative supercoiling by DNA gyrase is essential for maintaining chromosomal compaction, transcriptional programming, and genetic integrity in bacteria. Questions remain as to how gyrases from different species have evolved profound differences in their kinetics, efficiency, and extent of negative supercoiling. To explore this issue, we analyzed homology-directed mutations in the C-terminal, DNA-wrapping domain of the GyrA subunit of Escherichia coli gyrase (the ‘CTD’). The addition or removal of select, conserved basic residues markedly impacts both nucleotide-dependent DNA wrapping and supercoiling by the enzyme. Weakening CTD–DNA interactions slows supercoiling, impairs DNA-dependent ATP hydrolysis, and limits the extent of DNA supercoiling, while simultaneously enhancing decatenation and supercoil relaxation. Conversely, strengthening DNA wrapping does not result in a more extensively supercoiled DNA product, but partially uncouples ATP turnover from strand passage, manifesting in futile cycling. Our findings indicate that the catalytic cycle of E. coli gyrase operates at high thermodynamic efficiency, and that the stability of DNA wrapping by the CTD provides one limit to DNA supercoil introduction, beyond which strand passage competes with ATP-dependent supercoil relaxation. These results highlight a means by which gyrase can evolve distinct homeostatic supercoiling setpoints in a species-specific manner.


2019 ◽  
Vol 116 (50) ◽  
pp. 24956-24965 ◽  
Author(s):  
Sumitabha Brahmachari ◽  
John F. Marko

Eukaryote cell division features a chromosome compaction–decompaction cycle that is synchronized with their physical and topological segregation. It has been proposed that lengthwise compaction of chromatin into mitotic chromosomes via loop extrusion underlies the compaction-segregation/resolution process. We analyze this disentanglement scheme via considering the chromosome to be a succession of DNA/chromatin loops—a polymer “brush”—where active extrusion of loops controls the brush structure. Given type-II DNA topoisomerase (Topo II)-catalyzed topology fluctuations, we find that interchromosome entanglements are minimized for a certain “optimal” loop that scales with the chromosome size. The optimal loop organization is in accord with experimental data across species, suggesting an important structural role of genomic loops in maintaining a less entangled genome. Application of the model to the interphase genome indicates that active loop extrusion can maintain a level of chromosome compaction with suppressed entanglements; the transition to the metaphase state requires higher lengthwise compaction and drives complete topological segregation. Optimized genomic loops may provide a means for evolutionary propagation of gene-expression patterns while simultaneously maintaining a disentangled genome. We also find that compact metaphase chromosomes have a densely packed core along their cylindrical axes that explains their observed mechanical stiffness. Our model connects chromosome structural reorganization to topological resolution through the cell cycle and highlights a mechanism of directing Topo II-mediated strand passage via loop extrusion-driven lengthwise compaction.


Genes ◽  
2019 ◽  
Vol 10 (11) ◽  
pp. 868 ◽  
Author(s):  
Morimoto ◽  
Tsuda ◽  
Bunch ◽  
Sasanuma ◽  
Austin ◽  
...  

Type II DNA topoisomerase enzymes (TOP2) catalyze topological changes by strand passage reactions. They involve passing one intact double stranded DNA duplex through a transient enzyme-bridged break in another (gated helix) followed by ligation of the break by TOP2. A TOP2 poison, etoposide blocks TOP2 catalysis at the ligation step of the enzyme-bridged break, increasing the number of stable TOP2 cleavage complexes (TOP2ccs). Remarkably, such pathological TOP2ccs are formed during the normal cell cycle as well as in postmitotic cells. Thus, this ‘abortive catalysis’ can be a major source of spontaneously arising DNA double-strand breaks (DSBs). TOP2-mediated DSBs are also formed upon stimulation with physiological concentrations of androgens and estrogens. The frequent occurrence of TOP2-mediated DSBs was previously not appreciated because they are efficiently repaired. This repair is performed in collaboration with BRCA1, BRCA2, MRE11 nuclease, and tyrosyl-DNA phosphodiesterase 2 (TDP2) with nonhomologous end joining (NHEJ) factors. This review first discusses spontaneously arising DSBs caused by the abortive catalysis of TOP2 and then summarizes proteins involved in repairing stalled TOP2ccs and discusses the genotoxicity of the sex hormones.


2019 ◽  
Author(s):  
Hanqian Wang ◽  
Junhua Zhang ◽  
Xin Zheng ◽  
ZhenFeng Zhang ◽  
Zhiyong Zhang ◽  
...  

AbstractDNA topoisomerases are essential enzymes for a variety of cellular processes involved in DNA transactions. Many of the mechanistic insights into type IA DNA topoisomerases have principally come from studies on the prokaryotes and eukaryotes. However, a structural understanding of type IA topoisomerases in the Archaeal is lacking. Here we report the crystal structures of full-length Sulfolobus solfataricus topoisomerase III (Sso topo III) both by itself and in complex with an 8-base single-stranded DNA fragment, which were determined at 2.1 Å and 2.5 Å, respectively. The structures show that, as a member of type IA topoisomerases, Sso topo III adopts a torus-like architecture consisting of a four-domain core region and a novel C-terminal zinc finger domain (domain V). Upon binding to ssDNA, Sso topo III undergoes dramatic conformational changes, similar to those of other type IA topoisomerases. Structural analyses and biochemical assays revealed that domain V is essential for the DNA decatenation activity of Sso topo III. These findings establish Sso topo III as an alternative prototype of type IA topoisomerases to further understand the loop-independent decatenation mechanism in the enzyme-bridged strand passage model.


2019 ◽  
Author(s):  
Sumitabha Brahmachari ◽  
John F. Marko

AbstractEukaryote cell division features a chromosome compaction-decompaction cycle that is synchronized with their physical and topological segregation. It has been proposed that lengthwise compaction of chromatin into mitotic chromosomes via loop extrusion underlies the compaction-segregation/resolution process. We analyze this disentanglement scheme via considering the chromosome to be a succession of DNA/chromatin loops - a polymer “brush” - where active extrusion of loops controls the brush structure. Given topoisomerase (TopoII)-catalyzed topology fluctuations, we find that inter-chromosome entanglements are minimized for a certain “optimal” loop that scales with the chromosome size. The optimal loop organization is in accord with experimental data across species, suggesting an important structural role of genomic loops in maintaining a less entangled genome. Application of the model to the interphase genome indicates that active loop extrusion can maintain a level of chromosome compaction with suppressed entanglements; the transition to the metaphase state requires higher lengthwise compaction, and drives complete topological segregation. Optimized genomic loops may provide a means for evolutionary propagation of gene-expression patterns while simultaneously maintaining a disentangled genome. We also find that compact metaphase chromosomes have a densely packed core along their cylindrical axes that explains their observed mechanical stiffness. Our model connects chromosome structural reorganization to topological resolution through the cell cycle, and highlights a mechanism of directing Topo-II mediated strand passage via loop extrusion driven lengthwise compaction.


Sign in / Sign up

Export Citation Format

Share Document