Visualizing Signal Transduction: Receptors, G-Proteins, and Adenylate Cyclases

1996 ◽  
Vol 91 (5) ◽  
pp. 527-537 ◽  
Author(s):  
Carmen W. Dessauer ◽  
Bruce A. Posner ◽  
Alfred G. Gilman

1. The first glimpses of heterotrimeric G-proteins came with the discoveries of the ubiquitous adenylate cyclase activator, Gs, and the specialized retinal cGMP phosphodiesterase activator, Gt or transducin. The model that evolved for regulation of adenylate cyclase activity by G-proteins soon proved to be a general paradigm for a large number of signalling pathways. Although many different G-proteins interact with a diverse array of receptors and effectors, each is composed of a guanine-nucleotide-binding α-subunit and a tightly associated complex of a β- and a γ-subunit. 2. Receptors catalyse the activation of G-proteins by promoting exchange of GDP for GTP, while G-proteins catalyse their own deactivation as a result of their intrinsic GTPase activity. Crystallographic analysis has described several of the various conformational states that G-proteins undergo as they are activated and deactivated and has provided great insight into the kinetic models of G-protein-mediated signal transduction. 3. The regulation of adenylate cyclase has proven to be intriguing and complex. Gsα activates all forms of mammalian adenylate cyclase; other G-proteins (Gi, Go and Gz) inhibit certain isoforms of the enzyme. The discovery of new isoforms of adenylate cyclase has revealed synergistic and conditional mechanisms of regulation. These include activation or inhibition by the G-protein βγ-subunit complex, activation by Ca2+-calmodulin, and phosphorylation by protein kinases. The large number of receptors, G-proteins and adenylate cyclases provides a complex signalling network that integrates and interprets a multitude of convergent inputs.

2000 ◽  
Vol 78 (5) ◽  
pp. 537-550 ◽  
Author(s):  
Barbara Vanderbeld ◽  
Gregory M Kelly

Heterotrimeric G proteins are involved in numerous biological processes, where they mediate signal transduction from agonist-bound G-protein-coupled receptors to a variety of intracellular effector molecules and ion channels. G proteins consist of two signaling moieties: a GTP-bound α subunit and a βγ heterodimer. The βγ dimer, recently credited as a significant modulator of G-protein-mediated cellular responses, is postulated to be a major determinant of signaling fidelity between G-protein-coupled receptors and downstream effectors. In this review we have focused on the role of βγ signaling and have included examples to demonstrate the heterogeneity in the heterodimer composition and its implications in signaling fidelity. We also present an overview of some of the effectors regulated by βγ and draw attention to the fact that, although G proteins and their associated receptors play an instrumental role in development, there is rather limited information on βγ signaling in embryogenesis.Key words: G protein, βγ subunit, G-protein-coupled receptor, signal transduction, adenylyl cyclase.


1993 ◽  
Vol 85 (4) ◽  
pp. 393-399 ◽  
Author(s):  
A. Ferro ◽  
C. Plumpton ◽  
M. J. Brown

1. Guanine nucleotide-binding proteins (G-proteins) play a central role in signal transduction between a wide variety of cell-surface receptors and intracellular second messenger systems. Recently, we and others have demonstrated that cross-regulation can occur between a variety of G-protein-linked receptors in human heart. Chronic β1-adrenoceptor blockade gives rise to sensitization of β2-adrenoceptor and of 5HT4-receptor responses, both of which are mediated via stimulation of adenylate cyclase through stimulatory G-proteins (Gs), and also gives rise to desensit-ization of muscarinic M2-receptor responses, which inhibit adenylate cyclase through inhibitory G-proteins (Gi). 2. In order to investigate whether these effects are due to quantitative changes in cardiac G-protein isoforms, we measured their abundance in right atrial appendage from patients taking or not taking β1-adrenoceptor antagonists, by immunoblotting. 3. Samples of right atrial appendage homogenate were subjected to SDS/PAGE, and proteins were electroblotted on to nitrocellulose membranes. These were then probed with specific anti-G protein anti-sera, and binding was revealed by means of a secondary antibody labelled with alkaline phosphatase and using a chromogenic substrate. The resulting bands were quantified by laser densitometry. 4. No quantitative differences were detected, between these two groups of patients, in the amounts of α-subunit of ‘long’ or ‘short’ Gs isoforms (GsαL and GsαS), or in the amounts of Gi 1 + 2 α-subunit (Giα1 + 2). Nor was any difference found in the abundance of the β-subunit of G-proteins. No ‘other’ G-protein (Go) was detectable in these samples by immunoblotting. 5. We conclude that the phenomenon of receptor cross-regulation which we have previously observed in human right atrial appendage is unlikely to be explained by quantitative changes at the G-protein level.


2001 ◽  
Vol 354 (2) ◽  
pp. 337-344 ◽  
Author(s):  
William K. LIM ◽  
Richard R. NEUBIG

G-protein-coupled receptors activate signal-transducing G-proteins, which consist of an α subunit and a βγ dimer. Membrane extraction with 5–7M urea has been used to uncouple receptors from endogenous G-proteins to permit reconstitution with purified G-proteins. We show that αi subunits are inactivated with 5M urea whereas the βγ dimer requires at least 7M urea for its inactivation. There is no significant loss of receptors. Surprisingly, Western-blot analysis indicates that the urea-denatured αi subunit remains mostly membrane-bound and that β is only partially removed. After 7M urea treatment, both αi1 and βγ subunits are required to restore high-affinity agonist binding and receptor-catalysed guanosine 5′-[γ-thio]triphosphate binding. We demonstrate the generality of this approach for four Gi-coupled receptors (α2A-adrenergic, adenosine A1, 5-hydroxytryptamine1A and µ-opioid) expressed in insect cells and two mammalian cell lines. Thus a selectivity of urea for G-protein α versus βγ subunits is established in both concentration and mechanism.


1990 ◽  
Vol 267 (2) ◽  
pp. 391-398 ◽  
Author(s):  
F R McKenzie ◽  
G Milligan

Mouse neuroblastoma x rat glioma hybrid cells (NG108-15) express an opioid receptor of the delta subclass which both stimulates high-affinity GTPase activity and inhibits adenylate cyclase by interacting with a pertussis-toxin-sensitive guanine-nucleotide-binding protein(s) (G-protein). Four such G-proteins have now been identified without photoreceptor-containing tissues. We have generated anti-peptide antisera against synthetic peptides which correspond to the C-terminal decapeptides of the alpha-subunit of each of these G-proteins and also to the stimulatory G-protein of the adenylate cyclase cascade (Gs). Using these antisera, we demonstrate the expression of three pertussis-toxin-sensitive G-proteins in these cells, which correspond to the products of the Gi2, Gi3 and Go genes, as well as Gs. Gi1, however, is not expressed in detectable amounts. IgG fractions from each of these antisera and from normal rabbit serum were used to attempt to interfere with the interaction of the opioid receptor with the G-protein system by assessing ligand stimulation of high-affinity GTPase activity, inhibition of adenylate cyclase activity and conversion of the receptor to a state which displays reduced affinity for agonists. The IgG fraction from the antiserum (AS7) which specifically identifies Gi2 in these cells attenuated the effects of the opioid receptor. This effect was complete and was not mimicked by any of the other antisera. We conclude that the delta-opioid receptor of these cells interacts directly and specifically with Gi2 to cause inhibition of adenylate cyclase, and that Gi2 represents the true Gi of the adenylate cyclase cascade. The ability to measure alterations in agonist affinity for receptors following the use of specific antisera against a range of G-proteins implies that such techniques should be applicable to investigations of the molecular identity of the G-protein(s) which interacts with any receptor.


Blood ◽  
1990 ◽  
Vol 75 (3) ◽  
pp. 583-588 ◽  
Author(s):  
SM Kharbanda ◽  
ML Sherman ◽  
DW Kufe

Abstract Guanine nucleotide binding proteins (G proteins) are regulatory molecules that couple membrane receptors to effector systems such as adenylate cyclase and phospholipase C. The alpha subunits of G proteins bind to guanosine 5′-diphosphate (GDP) in the unstimulated state and guanosine 5′ triphosphate (GTP) in the active state. Tiazofurin (2-beta- D-ribofuranosylthiazole-4-carboxamide), a specific inhibitor of inosine monophosphate (IMP) dehydrogenase, decreases guanylate synthesis from IMP in HL-60 promyelocytic leukemia cells and depletes intracellular guanine nucleotide pools. This study demonstrates that treatment of HL- 60 cells with tiazofurin is associated with a fourfold increase in membrane binding sites for the nonhydrolyzable analogue GDP beta S. This increase in binding sites was associated with a 3.2-fold decrease in GDP beta S binding affinity. Similar findings were obtained with GTP gamma S. These effects of tiazofurin treatment on guanine nucleotide binding were also associated with decreased adenosine diphosphate- ribosylation of specific G protein substrates by cholera and pertussis toxin. The results further demonstrate that tiazofurin treatment results in inhibition of G protein-mediated transmembrane signaling mechanisms. In this regard, stimulation of adenylate cyclase by prostaglandin E2 was inhibited by over 50% in tiazofurin-treated cells. Furthermore, tiazofurin treatment resulted in inhibition of N- formylmethionylleucylphenylalanine-induced stimulation of phospholipase C. Taken together, these results indicate that tiazofurin acts at least in part by inhibiting the ability of G proteins to function as transducers of intracellular signals.


Blood ◽  
1990 ◽  
Vol 75 (3) ◽  
pp. 583-588
Author(s):  
SM Kharbanda ◽  
ML Sherman ◽  
DW Kufe

Guanine nucleotide binding proteins (G proteins) are regulatory molecules that couple membrane receptors to effector systems such as adenylate cyclase and phospholipase C. The alpha subunits of G proteins bind to guanosine 5′-diphosphate (GDP) in the unstimulated state and guanosine 5′ triphosphate (GTP) in the active state. Tiazofurin (2-beta- D-ribofuranosylthiazole-4-carboxamide), a specific inhibitor of inosine monophosphate (IMP) dehydrogenase, decreases guanylate synthesis from IMP in HL-60 promyelocytic leukemia cells and depletes intracellular guanine nucleotide pools. This study demonstrates that treatment of HL- 60 cells with tiazofurin is associated with a fourfold increase in membrane binding sites for the nonhydrolyzable analogue GDP beta S. This increase in binding sites was associated with a 3.2-fold decrease in GDP beta S binding affinity. Similar findings were obtained with GTP gamma S. These effects of tiazofurin treatment on guanine nucleotide binding were also associated with decreased adenosine diphosphate- ribosylation of specific G protein substrates by cholera and pertussis toxin. The results further demonstrate that tiazofurin treatment results in inhibition of G protein-mediated transmembrane signaling mechanisms. In this regard, stimulation of adenylate cyclase by prostaglandin E2 was inhibited by over 50% in tiazofurin-treated cells. Furthermore, tiazofurin treatment resulted in inhibition of N- formylmethionylleucylphenylalanine-induced stimulation of phospholipase C. Taken together, these results indicate that tiazofurin acts at least in part by inhibiting the ability of G proteins to function as transducers of intracellular signals.


1992 ◽  
Vol 284 (2) ◽  
pp. 327-332 ◽  
Author(s):  
S Paris ◽  
F Eckstein

The effects of guanosine 5′-[beta-thio]triphosphate (GTP beta[S]) on G proteins have been examined in Chinese hamster lung fibroblasts (CCL39 line) permeabilized with alpha-toxin from Staphylococcus aureus. Although much less effective than guanosine 5′-[gamma-thio]triphosphate (GTP gamma[S]), both (Rp) and (Sp) diastereomers of GTP beta[S] were found to activate three G protein-mediated pathways: inhibition of forskolin-stimulated adenylate cyclase (mediated by Gi), potentiation of receptor-mediated activation of adenylate cyclase (mediated by Gs), and activation of phosphoinositide breakdown (mediated by Gp). Activation of Gi and Gs occurred above 3 microM-GTP beta[S], but activation of Gp only occurred above 100 microM-GTP beta[S]. Moreover, the order of effectiveness of the two diastereomers was not the same for the three G protein-mediated processes. Whereas both Gi and Gs were more effectively activated (about 5-fold) by (Sp)-GTP beta[S] than by (Rp)-GTP beta[S], Gp showed a marked preference for the (Rp) isomer. Indeed, (Rp)-GTP beta[S] induced the formation of inositol phosphates with a shorter latency and was a better competitor of GDP for binding to Gp than the (Sp) isomer. These results point to different guanine nucleotide-binding properties for Gi and Gs on the one hand and Gp on the other. At least two distinct Gp proteins, differing by their sensitivity to pertussis toxin, are present in CCL39 cells. Since pretreatment of cells with pertussis toxin completely suppressed the effects of (Rp)-GTP beta[S] on Gi, while only slightly attenuating its effects on Gp, we believe that it is the pertussis toxin-insensitive Gp which prefers the (Rp) isomer. Therefore (Rp)-GTP beta[S] may be a valuable tool for the selective activation and the biochemical characterization of this pertussis toxin-insensitive Gp.


1987 ◽  
Author(s):  
K H Jakobs ◽  
P Gierschik ◽  
R Grandt

Activation of platelets by agonists acting via cell surface-located receptors apparently involves as an early event in transmembrane signalling an interaction of the agonist-occupied receptor with a guanine nucleotide-binding regulatory protein (G-protein). The activated G-protein, then, transduces the information to the effector molecule, being responsible for the changes in intracellular second messengers. At least two changes in intracellular signal molecules are often found to be associated with platelet activation by agonists, i.e., increases in inositol trisphosphate and diacylglycerol levels caused by activation of a polyphosphoinositide-specific phospholipase C and decrease in cyclic AMP concentration caused by inhibition of adenylate cyclase.Both actions of platelet-activating agents apparently involve G-proteins as transducing elements. Generally, the function of a G-protein in signal transduction can be measured either by its ability to regulate the activity of the effector molecule (phospholipase C or adenylate cyclase) or the binding affinity of an agonist to its specific receptor or by the abitlity of the G-protein to bind and hydrolyze GTP or one of its analogs in response to agonist-activated receptors. Some platelet-activating agonists (e.g. thrombin) can cause both adenylate cyclase inhibition and phospholipase C activation, whereas others induce either inhibition of adenylate cyclase (e.g. α2-adrenoceptor agonists) or activation of phospholipase C (e.g. stable endoperoxide analogs) . It is not yet known whether the simultaneous activation of two signal transduction systems is due to activation of two separate G-proteins by one receptor, to two distinct receptors activating each a distinct G-protein or to activation of two effector molecules by one G-protein.For some of the G-proteins, rather specific compounds are available causing inactivation of their function. In comparison to Gs, the stimulatory G-protein of the adenylate cyclase system, the adenylate cyclase inhibitory Gi-protein is rather specifically inactivated by ADP-ribosylation of its a-subunit by pertussis toxin, “unfortunately” not acting in intact platelets, and by SH-group reactive agents such as N-ethylmaleimide and diamide, apparently also affecting the Giα-subunit. Both of these treatments completely block α2-adrenoceptor-induced GTPase stimulation and adenylate cyclase inhibition and also thrombin-induced inhibition of adenylate cyclase. In order to know whether the G-protein coupling receptors to phospholipase C is similar to or different from the Gi-protein, high affinity GTPase stimulation by agents known to activate phospholipase C was evaluated in platelet membranes. The data obtained indicated that GTPase stimulation by agents causing both adenylate cyclase inhibition and phospholipase C activation is reduced, but only partially, by the above mentioned Gi-inactivating agents, while stimulation of GTPase by agents stimulating only phospholipase C is not affected by these treatments. These data suggested that the G-protein regulating phospholipase C activity in platelet membranes is different from the Gi-protein and may also not be a substrate for pertussis toxin. Measuring thrombin stimulation of inositol phosphate and diacylglycerol formation in saponin-permeabilized platelets, apparently contradictory data were reported after pertussis toxin treatment, being without effect or causing even an increase in thrombin stimulation of inositol phosphate formation (Lapetina: BBA 884, 219, 1986) or being inhibitory to thrombin stimulation of diacylglycerol formation (Brass et al.: JBC 261, 16838, 1986). These data indicate that the nature of the phospholipase C-related G-protein(s) is not yet defined and that their elucidation requires more specific tools as well as purification and reconstitution experiments. Preliminary data suggest that some antibiotics may serve as useful tools to characterize the phospho-lipase-related G-proteins. The possible role of G-protein phosphorylation by intracellular signal molecule-activated protein kinases in attenuation of signal transduction in platelets will be discussed.


Membranes ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 222
Author(s):  
Agnieszka Polit ◽  
Paweł Mystek ◽  
Ewa Błasiak

In highly organized multicellular organisms such as humans, the functions of an individual cell are dependent on signal transduction through G protein-coupled receptors (GPCRs) and subsequently heterotrimeric G proteins. As most of the elements belonging to the signal transduction system are bound to lipid membranes, researchers are showing increasing interest in studying the accompanying protein–lipid interactions, which have been demonstrated to not only provide the environment but also regulate proper and efficient signal transduction. The mode of interaction between the cell membrane and G proteins is well known. Despite this, the recognition mechanisms at the molecular level and how the individual G protein-membrane attachment signals are interrelated in the process of the complex control of membrane targeting of G proteins remain unelucidated. This review focuses on the mechanisms by which mammalian Gα subunits of G proteins interact with lipids and the factors responsible for the specificity of membrane association. We summarize recent data on how these signaling proteins are precisely targeted to a specific site in the membrane region by introducing well-defined modifications as well as through the presence of polybasic regions within these proteins and interactions with other components of the heterocomplex.


1989 ◽  
Vol 9 (1) ◽  
pp. 152-158
Author(s):  
H A Fujimura

I have isolated a new type of sterile mutant of Saccharomyces cerevisiae, carrying a single mutant allele, designated dac1, which was mapped near the centromere on chromosome VIII. The dac1 mutation caused specific defects in the pheromone responsiveness of both a and alpha cells and did not seem to be associated with any pleiotropic phenotypes. Thus, in contrast to the ste4, ste5, ste7, ste11, and ste12 mutations, the dac1 mutation had no significant effect on such constitutive functions of haploid cells as pheromone production and alpha-factor destruction. The characteristics of this phenotype suggest that the DAC1 gene encodes a component of the pheromone response pathway common to both a and alpha cells. Introduction of the GPA1 gene encoding an S. cerevisiae homolog of the alpha subunit of mammalian guanine nucleotide-binding regulatory proteins (G proteins) into sterile dac1 mutants resulted in restoration of pheromone responsiveness and mating competence to both a and alpha cells. These results suggest that the dac1 mutation is an allele of the GPA1 gene and thus provide genetic evidence that the yeast G protein homolog is directly involved in the mating pheromone signal transduction pathway.


Sign in / Sign up

Export Citation Format

Share Document