A new ferrochelatase mutation combined with low expression alleles in a Japanese patient with erythropoietic protoporphyria

2002 ◽  
Vol 102 (5) ◽  
pp. 501-506 ◽  
Author(s):  
Yumiko YASUI ◽  
Shikibu MURANAKA ◽  
Tsuyoshi TAHARA ◽  
Ryo SHIMIZU ◽  
Sonoko WATANABE ◽  
...  

We investigated the molecular defect of the ferrochelatase gene in a Japanese patient with erythropoietic protoporphyria (EPP), and identified a novel 16 base pair (574-589) deletion within exon 5. This deletion resulted in a frame-shift mutation and created a premature stop codon at amino acid position 198. The same molecular defect was also identified in his mother and a brother who had symptomatic EPP, but not in his father who was asymptomatic. The subjects with EPP were homozygous for the low expression haplotype, while his father was heterozygous for this haplotype. These results indicate that the combination of a 16 base pair deletion and low expression of the wild-type allelic variant is responsible for EPP in this pedigree.

2003 ◽  
Vol 82 (12) ◽  
pp. 1008-1012 ◽  
Author(s):  
Y. Wang ◽  
H. Zhao ◽  
X. Zhang ◽  
H. Feng

Rieger syndrome is one of the most serious causes of tooth agenesis. Mutations in the PITX2, FOXC1, and PAX6 genes have been associated with Rieger syndrome. We have studied a three-generation Chinese family affected with Rieger syndrome and showing prominent dental abnormalities. Mutational screening and sequence analysis of the PITX2 gene revealed a previously unidentified four-base-pair deletion of nucleotides 717-720 in exon 5 in all affected members. The mutation causes a frame shift after Thr44, the 7th amino acid of the homeo-domain, and introduces a premature stop codon in the gene sequence. This deletion is the first unquestionable loss-of-function mutation, deleting all the functionally important parts of the protein. Our novel discovery indicates that the oligodontia and other phenotypes of Rieger syndrome observed in this family are due to this PITX2 mutation, and these data further support the critical role of PIXT2 in tooth morphogenesis.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Abhishek Kumar ◽  
Nagarajan Paramasivam ◽  
Obul Reddy Bandapalli ◽  
Matthias Schlesner ◽  
Tianhui Chen ◽  
...  

Abstract Background The most frequently identified strong cancer predisposition mutations for colorectal cancer (CRC) are those in the mismatch repair (MMR) genes in Lynch syndrome. Laboratory diagnostics include testing tumors for immunohistochemical staining (IHC) of the Lynch syndrome-associated DNA MMR proteins and/or for microsatellite instability (MSI) followed by sequencing or other techniques, such as denaturing high performance liquid chromatography (DHPLC), to identify the mutation. Methods In an ongoing project focusing on finding Mendelian cancer syndromes we applied whole-exome/whole-genome sequencing (WES/WGS) to 19 CRC families. Results Three families were identified with a pathogenic/likely pathogenic germline variant in a MMR gene that had previously tested negative in DHPLC gene variant screening. All families had a history of CRC in several family members across multiple generations. Tumor analysis showed loss of the MMR protein IHC staining corresponding to the mutated genes, as well as MSI. In family A, a structural variant, a duplication of exons 4 to 13, was identified in MLH1. The duplication was predicted to lead to a frameshift at amino acid 520 and a premature stop codon at amino acid 539. In family B, a 1 base pair deletion was found in MLH1, resulting in a frameshift and a stop codon at amino acid 491. In family C, we identified a splice site variant in MSH2, which was predicted to lead loss of a splice donor site. Conclusions We identified altogether three pathogenic/likely pathogenic variants in the MMR genes in three of the 19 sequenced families. The MLH1 variants, a duplication of exons 4 to 13 and a frameshift variant, were novel, based on the InSiGHT and ClinVar databases; the MSH2 splice site variant was reported by a single submitter in ClinVar. As a variant class, duplications have rarely been reported in the MMR gene literature, particularly those covering several exons.


Genome ◽  
2016 ◽  
Vol 59 (7) ◽  
pp. 439-448 ◽  
Author(s):  
Siti W. Mohd-Zin ◽  
Nor-Linda Abdullah ◽  
Aminah Abdullah ◽  
Nicholas D.E. Greene ◽  
Pike-See Cheah ◽  
...  

The EphA4 receptor tyrosine kinase is involved in numerous cell-signalling activities during embryonic development. EphA4 has the ability to bind to both types of ephrin ligands, the ephrinAs and ephrinBs. The C57BL/6J-Epha4rb-2J/GrsrJ strain, denoted Epha4rb-2J/rb-2J, is a spontaneous mouse mutant that arose at The Jackson Laboratory. These mutants exhibited a synchronous hind limb locomotion defect or “hopping gait” phenotype, which is also characteristic of EphA4 null mice. Genetic complementation experiments suggested that Epha4rb-2J corresponds to an allele of EphA4, but details of the genomic defect in this mouse mutant are currently unavailable. We found a single base-pair deletion in exon 9 resulting in a frame shift mutation that subsequently resulted in a premature stop codon. Analysis of the predicted structure of the truncated protein suggests that both the kinase and sterile α motif (SAM) domains are absent. Definitive determination of genotype is needed for experimental studies of mice carrying the Epha4rb-2J allele, and we have also developed a method to ease detection of the mutation through RFLP. Eph-ephrin family members are reportedly expressed as numerous isoforms. Hence, delineation of the specific mutation in EphA4 in this strain is important for further functional studies, such as protein–protein interactions, immunostaining and gene compensatory studies, investigating the mechanism underlying the effects of altered function of Eph family of receptor tyrosine kinases on phenotype.


Blood ◽  
2000 ◽  
Vol 96 (2) ◽  
pp. 560-568 ◽  
Author(s):  
Simon Allen ◽  
Adel M. Abuzenadah ◽  
Joanna Hinks ◽  
Joanna L. Blagg ◽  
Turkiz Gursel ◽  
...  

Abstract In this report we describe the molecular defect underlying partial and severe quantitative von Willebrand factor (VWF) deficiencies in 3 families previously diagnosed with types 1 and 3 Von Willebrand-disease. Analysis of the VWF gene in affected family members revealed a novel C to T transition at nucleotide 1067 of the VWF complemetary DNA (cDNA), predicting substitution of arginine by tryptophan at amino acid position 273 (R273W) of pre–pro-VWF. Two patients, homozygous for the R273W mutation, had a partial VWF deficiency (VWF:Ag levels of 0.06 IU/mL and 0.09 IU/mL) and lacked high-molecular weight VWF multimers in plasma. A third patient, also homozygous for the R273W mutation, had a severe VWF deficiency (VWF:Ag level of less than 0.01 IU/mL) and undetectable VWF multimers in plasma. Recombinant VWF having the R273W mutation was expressed in COS-7 cells. Pulse-chase experiments showed that secretion of rVWFR273W was severely impaired compared with wild-type rVWF. However, the mutation did not affect the ability of VWF to form dimers in the endoplasmic reticulum (ER). Multimer analysis showed that rVWFR273W failed to form high-molecular-weight multimers present in wild-type rVWF. We concluded that the R273W mutation is responsible for the quantitative VWF deficiencies and aberrant multimer patterns observed in the affected family members. To identify factors that may function in the intracellular retention of rVWFR273W, we investigated the interactions of VWF expressed in COS-7 cells with molecular chaperones of the ER. The R273W mutation did not affect the ability of VWF to bind to BiP, Grp94, ERp72, calnexin, and calreticulin in COS-7 cells.


1993 ◽  
Vol 2 (9) ◽  
pp. 1495-1496 ◽  
Author(s):  
David J. Todd ◽  
Anne E. Hughes ◽  
Kevin T. Ennls ◽  
Alana J. Ward ◽  
Desmond Burrows ◽  
...  

Blood ◽  
1999 ◽  
Vol 93 (6) ◽  
pp. 2105-2110 ◽  
Author(s):  
Laurent Gouya ◽  
Herve Puy ◽  
Jerôme Lamoril ◽  
Vasco Da Silva ◽  
Bernard Grandchamp ◽  
...  

Erythropoietic protoporphyria (EPP) is a rare autosomal dominant disorder of heme biosynthesis characterized by partial decrease in ferrochelatase (FECH; EC 4.99.1.1) activity with protoporphyrin overproduction and consequent painful skin photosensitivity and rarely liver disease. EPP is normally inherited in an autosomal dominant pattern with low clinical penetrance; the many different mutations that have been identified are restricted to one FECH allele, with the other one being free of any mutations. However, clinical manifestations of dominant EPP cannot be simply a matter ofFECH haploinsufficiency, because patients have enzyme levels that are lower than the expected 50%. From RNA analysis in one family with dominant EPP, we recently suggested that clinical expression required coinheritance of a normal FECH allele with low expression and a mutant FECH allele. We now show that (1) coinheritance of a FECH gene defect and a wild-type low-expressed allele is generally involved in the clinical expression of EPP; (2) the low-expressed allelic variant was strongly associated with a partial 5′ haplotype [−251G IVS1−23T IVS2μsatA9] that may be ancestral and was present in an estimated 10% of a control group of Caucasian origin; and (3) haplotyping allows the absolute risk of developing the disease to be predicted for those inheriting FECH EPP mutations. EPP may thus be considered as an inherited disorder that does not strictly follow recessive or dominant rules. It may represent a model for phenotype modulation by mild variation in expression of the wild-type allele in autosomal dominant diseases.


2008 ◽  
Vol 87 (1) ◽  
pp. 56-59 ◽  
Author(s):  
P. Papagerakis ◽  
H.-K. Lin ◽  
K.Y. Lee ◽  
Y. Hu ◽  
J.P. Simmer ◽  
...  

Proteolytic enzymes are necessary for the mineralization of dental enamel during development, and mutations in the kallikrein 4 ( KLK4) and enamelysin ( MMP20) genes cause autosomal-recessive amelogenesis imperfecta (ARAI). So far, only one KLK4 and two MMP20 mutations have been reported. We have identified an ARAI-causing point mutation (c.102G>A, g.102G>A, and p.W34X) in exon 1 of MMP20 in a proband with autosomal-recessive hypoplastic-hypomaturation amelogenesis imperfecta. The G to A transition changes the tryptophan (W) codon (TGG) at amino acid position 34 into a translation termination (X) codon (TGA). No disease-causing sequence variations were detected in KLK4. The affected enamel is thin, with mild spacing in the anterior dentition. The enamel layer is hypomineralized, does not contrast with dentin on radiographs, and tends to chip away from the underlying dentin. An intrinsic yellowish pigmentation is evident, even during eruption. The phenotype supports current ideas concerning the function of enamelysin.


mBio ◽  
2015 ◽  
Vol 6 (2) ◽  
Author(s):  
Nicholas F. Noriea ◽  
Tina R. Clark ◽  
Ted Hackstadt

ABSTRACTStrains ofRickettsia rickettsii, the causative agent of Rocky Mountain spotted fever (RMSF), differ dramatically in virulence despite >99% genetic homology. Spotted fever group (SFG) rickettsiae produce two immunodominant outer membrane proteins, rickettsial OmpA (rOmpA) and rOmpB, which are conserved throughout the SFG and thought to be fundamental to pathogenesis. rOmpA is present in all virulent strains ofR. rickettsiibut is not produced in the only documented avirulent strain, Iowa, due to a premature stop codon. Here we report the creation of an isogenicompAmutant in the highly virulent strain Sheila Smith by insertion of intronic RNA to create a premature stop codon 312 bp downstream of the 6,747-bp open reading frame initiation site (int312). Targeted insertion was accomplished using an LtrA group II intron retrohoming system. Growth and entry rates of Sheila SmithompA::int312 in Vero cells remained comparable to those of the wild type. Virulence was assessed in a guinea pig model by challenge with 100 PFU of eitherompA::int312 Sheila Smith or the wild type, but no significant difference in either fever peak (40.5°C) or duration (8 days) were shown between the wild type and the knockout. The ability to disrupt genes in a site-specific manner using an LtrA group II intron system provides an important new tool for evaluation of potential virulence determinants in rickettsial disease research.IMPORTANCER. rickettsiirOmpA is an immunodominant outer membrane autotransporter conserved in the spotted fever group. Previous studies and genomic comparisons suggest that rOmpA is involved in adhesion and may be critical for virulence. Little information is available for rickettsial virulence factors in an isogenic background, as limited systems for targeted gene disruption are currently available. Here we describe the creation of an rOmpA knockout by insertion of a premature stop codon into the 5′ end of the open reading frame using a group II intron system. An isogenic rOmpA knockout mutation in the highly virulent Sheila Smith strain did not cause attenuation in a guinea pig model of infection, and no altered phenotype was observed in cell culture. We conclude that rOmpA is not critical for virulence in a guinea pig model but may play a role in survival or transmission from the tick vector.


2021 ◽  
Vol 65 (5) ◽  
Author(s):  
Catherine D. Shelton ◽  
Matthew B. McNeil ◽  
Julie V. Early ◽  
Thomas R. Ioerger ◽  
Tanya Parish

ABSTRACT Tuberculosis, caused by Mycobacterium tuberculosis, is an urgent global health problem requiring new drugs, new drug targets, and an increased understanding of antibiotic resistance. We have determined the mode of resistance to be a series of arylamide compounds in M. tuberculosis. We isolated M. tuberculosis resistant mutants to two arylamide compounds which are inhibitory to growth under host-relevant conditions (butyrate as a sole carbon source). Thirteen mutants were characterized, and all had mutations in Rv2571c; mutations included a premature stop codon and frameshifts as well as nonsynonymous polymorphisms. We isolated a further 10 strains with mutations in Rv2571c with resistance. Complementation with a wild-type copy of Rv2571c restored arylamide sensitivity. Overexpression of Rv2571c was toxic in both wild-type and mutant backgrounds. We constructed M. tuberculosis strains with an unmarked deletion of the entire Rv2571c gene by homologous recombination and confirmed that these were resistant to the arylamide series. Rv2571c is a member of the aromatic amino acid transport family and has a fusaric acid resistance domain which is associated with compound transport. Since loss or inactivation of Rv2571c leads to resistance, we propose that Rv2571c is involved in the import of arylamide compounds.


Sign in / Sign up

Export Citation Format

Share Document