Cerebral oxygenation at high altitude and the response to carbon dioxide, hyperventilation and oxygen

2000 ◽  
Vol 98 (2) ◽  
pp. 159 ◽  
Author(s):  
C.H.E. IMRAY ◽  
S. BREAREY ◽  
T. CLARKE ◽  
D. HALE ◽  
J. MORGAN ◽  
...  
2000 ◽  
Vol 98 (2) ◽  
pp. 159-164 ◽  
Author(s):  
C. H. E. IMRAY ◽  
S. BREAREY ◽  
T. CLARKE ◽  
D. HALE ◽  
J. MORGAN ◽  
...  

Critical Care ◽  
2021 ◽  
Vol 25 (1) ◽  
Author(s):  
Chiara Robba ◽  
◽  
Lorenzo Ball ◽  
Denise Battaglini ◽  
Danilo Cardim ◽  
...  

Abstract Background In COVID-19 patients with acute respiratory distress syndrome (ARDS), the effectiveness of ventilatory rescue strategies remains uncertain, with controversial efficacy on systemic oxygenation and no data available regarding cerebral oxygenation and hemodynamics. Methods This is a prospective observational study conducted at San Martino Policlinico Hospital, Genoa, Italy. We included adult COVID-19 patients who underwent at least one of the following rescue therapies: recruitment maneuvers (RMs), prone positioning (PP), inhaled nitric oxide (iNO), and extracorporeal carbon dioxide (CO2) removal (ECCO2R). Arterial blood gas values (oxygen saturation [SpO2], partial pressure of oxygen [PaO2] and of carbon dioxide [PaCO2]) and cerebral oxygenation (rSO2) were analyzed before (T0) and after (T1) the use of any of the aforementioned rescue therapies. The primary aim was to assess the early effects of different ventilatory rescue therapies on systemic and cerebral oxygenation. The secondary aim was to evaluate the correlation between systemic and cerebral oxygenation in COVID-19 patients. Results Forty-five rescue therapies were performed in 22 patients. The median [interquartile range] age of the population was 62 [57–69] years, and 18/22 [82%] were male. After RMs, no significant changes were observed in systemic PaO2 and PaCO2 values, but cerebral oxygenation decreased significantly (52 [51–54]% vs. 49 [47–50]%, p < 0.001). After PP, a significant increase was observed in PaO2 (from 62 [56–71] to 82 [76–87] mmHg, p = 0.005) and rSO2 (from 53 [52–54]% to 60 [59–64]%, p = 0.005). The use of iNO increased PaO2 (from 65 [67–73] to 72 [67–73] mmHg, p = 0.015) and rSO2 (from 53 [51–56]% to 57 [55–59]%, p = 0.007). The use of ECCO2R decreased PaO2 (from 75 [75–79] to 64 [60–70] mmHg, p = 0.009), with reduction of rSO2 values (59 [56–65]% vs. 56 [53–62]%, p = 0.002). In the whole population, a significant relationship was found between SpO2 and rSO2 (R = 0.62, p < 0.001) and between PaO2 and rSO2 (R0 0.54, p < 0.001). Conclusions Rescue therapies exert specific pathophysiological mechanisms, resulting in different effects on systemic and cerebral oxygenation in critically ill COVID-19 patients with ARDS. Cerebral and systemic oxygenation are correlated. The choice of rescue strategy to be adopted should take into account both lung and brain needs. Registration The study protocol was approved by the ethics review board (Comitato Etico Regione Liguria, protocol n. CER Liguria: 23/2020).


Neonatology ◽  
2021 ◽  
pp. 1-6
Author(s):  
Bi Ze ◽  
Lili Liu ◽  
Ge Sang Yang Jin ◽  
Minna Shan ◽  
Yuehang Geng ◽  
...  

<b><i>Background:</i></b> Accurate detection of cerebral oxygen saturation (rSO<sub>2</sub>) may be useful for neonatal brain injury prevention, and the normal range of rSO<sub>2</sub> of neonates at high altitude remained unclear. <b><i>Objective:</i></b> To compare cerebral rSO<sub>2</sub> and cerebral fractional tissue oxygen extraction (cFTOE) at high-altitude and low-altitude areas in healthy neonates and neonates with underlying diseases. <b><i>Methods:</i></b> 515 neonates from low-altitude areas and 151 from Tibet were enrolled. These neonates were assigned into the normal group, hypoxic-ischemic encephalopathy (HIE) group, and other diseases group. Near-infrared spectroscopy was used to measure rSO<sub>2</sub> in neonates within 24 h after admission. The differences of rSO<sub>2</sub>, pulse oxygen saturation (SpO<sub>2</sub>), and cFTOE levels were compared between neonates from low- and high-altitude areas. <b><i>Results:</i></b> (1) The mean rSO<sub>2</sub> and cFTOE levels in normal neonates from Tibet were 55.0 ± 6.4% and 32.6 ± 8.5%, significantly lower than those from low-altitude areas (<i>p</i> &#x3c; 0.05). (2) At high altitude, neonates with HIE, pneumonia (<i>p</i> &#x3c; 0.05), anemia, and congenital heart disease (<i>p</i> &#x3c; 0.05) have higher cFTOE than healthy neonates. (3) Compared with HIE neonates from plain areas, neonates with HIE at higher altitude had lower cFTOE (<i>p</i> &#x3c; 0.05), while neonates with heart disease in plateau areas had higher cFTOE than those in plain areas (<i>p</i> &#x3c; 0.05). <b><i>Conclusions:</i></b> The rSO<sub>2</sub> and cFTOE levels in normal neonates from high-altitude areas are lower than neonates from the low-altitude areas. Lower cFTOE is possibly because of an increase in blood flow to the brain, and this may be adversely affected by disease states which may increase the risk of brain injury.


Tellus B ◽  
2003 ◽  
Vol 55 (2) ◽  
pp. 94-104 ◽  
Author(s):  
Jaroslaw Necki ◽  
Martina Schmidt ◽  
Kazimierz Rozanski ◽  
Miroslaw Zimnoch ◽  
Adam Korus ◽  
...  

2017 ◽  
Vol 187 ◽  
pp. 66-72.e1 ◽  
Author(s):  
Laura Marie Louise Dix ◽  
Lauren Carleen Weeke ◽  
Linda Simone de Vries ◽  
Floris Groenendaal ◽  
Willem Baerts ◽  
...  

2009 ◽  
Vol 103 (8) ◽  
pp. 1182-1188 ◽  
Author(s):  
A.A. Roger Thompson ◽  
J. Kenneth Baillie ◽  
Matthew G.D. Bates ◽  
Martin F. Schnopp ◽  
Alistair Simpson ◽  
...  

2018 ◽  
Author(s):  
Erdal Yiğit ◽  
Alexander S. Medvedev ◽  
Paul Hartogh

Abstract. Carbon dioxide (CO2) ice clouds have been routinely observed in the middle atmosphere of Mars. However, there are still uncertainties concerning physical mechanisms that control their altitude, geographical, and seasonal distributions. Using the Max Planck Institute Martian General Circulation Model (MPI-MGCM), incorporating a state-of-the-art whole atmosphere subgrid-scale gravity wave parameterization (Yiğit et al., 2008), we demonstrate that internal gravity waves generated by lower atmospheric weather processes have wide reaching impact on the Martian climate. Globally, GWs cool the upper atmosphere of Mars by ~10 % and facilitate high-altitude CO2 ice cloud formation. CO2 ice cloud seasonal variations in the mesosphere and the mesopause region appreciably coincide with the spatio-temporal variations of GW effects, providing insight into the observed distribution of clouds. Our results suggest that GW propagation and dissipation constitute a necessary physical mechanism for CO2 ice cloud formation in the Martian upper atmosphere during all seasons.


Sign in / Sign up

Export Citation Format

Share Document