Protective effect of hydrogen sulfide in a murine model of acute lung injury induced by combined burn and smoke inhalation

2008 ◽  
Vol 115 (3) ◽  
pp. 91-97 ◽  
Author(s):  
Aimalohi Esechie ◽  
Levente Kiss ◽  
Gabor Olah ◽  
Eszter M. Horváth ◽  
Hal Hawkins ◽  
...  

Acute lung injury results in a severe inflammatory response, which leads to priming and activation of leucocytes, release of reactive oxygen and reactive nitrogen species, destruction of pulmonary endothelium, extravasation of protein-rich fluid into the interstitium and formation of oedema. Recently, H2S (hydrogen sulfide) has been shown to decrease the synthesis of pro-inflammatory cytokines, reduce leucocyte adherence to the endothelium and subsequent diapedesis of these cells from the microvasculature in in vivo studies, and to protect cells in culture from oxidative injury. In the present study, we hypothesized that a parenteral formulation of H2S would reduce the lung injury induced by burn and smoke inhalation in a novel murine model. H2S post-treatment significantly decreased mortality and increased median survival in mice. H2S also inhibited IL (interleukin)-1β levels and significantly increased the concentration of the anti-inflammatory cytokine IL-10 in lung tissue. Additionally, H2S administration attenuated protein oxidation following injury and improved the histological condition of the lung. In conclusion, these results suggest that H2S exerts protective effects in acute lung injury, at least in part through the activation of anti-inflammatory and antioxidant pathways.

2021 ◽  
pp. 175342592110625
Author(s):  
Ning An ◽  
Tao Yang ◽  
Xiao-Xia Zhang ◽  
Mei-xia Xu

Acute lung injury (ALI) is associated with a high mortality due to inflammatory cell infiltration and lung edema. The development of ALI commonly involves the activation of NF-κB. Since bergamottin is a natural furanocoumarin showing the ability to inhibit the activation of NF-κB, in this study we aimed to determine the effect of bergamottin on ALI. RAW264.7 mouse macrophages were pre-treated with bergamottin and then stimulated with LPS. Macrophage inflammatory responses were examined. Bergamottin (50 mg/kg body mass) was intraperitoneally administrated to mice 12 h before injection of LPS, and the effect of bergamottin on LPS-induced ALI was evaluated. Our results showed that LPS exposure led to increased production of TNF-α, IL-6, and monocyte chemoattractant protein-1 (MCP-1), which was impaired by bergamottin pre-treatment. In vivo studies confirmed that bergamottin pre-treatment suppressed LPS-induced lung inflammation and edema and reduced the levels of pro-inflammatory cytokines in lung tissues and bronchoalveolar lavage fluids. Mechanistically, bergamottin blocked LPS-induced activation of NF-κB signaling in lung tissues. Additionally, bergamottin treatment reduced NF-κB p65 protein acetylation, which was coupled with induction of SIRT1 expression. In conclusion, our results reveal the anti-inflammatory property of bergamottin in preventing ALI. Induction of SIRT1 and inhibition of NF-κB underlies the anti-inflammatory activity of bergamottin.


2020 ◽  
Vol 8 (S1) ◽  
Author(s):  
Tamara Merz ◽  
Nicole Denoix ◽  
Martin Wepler ◽  
Holger Gäßler ◽  
David A. C. Messerer ◽  
...  

AbstractThis review addresses the plausibility of hydrogen sulfide (H2S) therapy for acute lung injury (ALI) and circulatory shock, by contrasting the promising preclinical results to the present clinical reality. The review discusses how the narrow therapeutic window and width, and potentially toxic effects, the route, dosing, and timing of administration all have to be balanced out very carefully. The development of standardized methods to determine in vitro and in vivo H2S concentrations, and the pharmacokinetics and pharmacodynamics of H2S-releasing compounds is a necessity to facilitate the safety of H2S-based therapies. We suggest the potential of exploiting already clinically approved compounds, which are known or unknown H2S donors, as a surrogate strategy.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Xin-Yang Wang ◽  
Xin-Yu Li ◽  
Cheng-Hua Wu ◽  
Yu Hao ◽  
Pan-Han Fu ◽  
...  

Abstract Background Endothelial glycocalyx loss is integral to increased pulmonary vascular permeability in sepsis-related acute lung injury. Protectin conjugates in tissue regeneration 1 (PCTR1) is a novel macrophage-derived lipid mediator exhibiting potential anti-inflammatory and pro-resolving benefits. Methods PCTR1 was administrated intraperitoneally with 100 ng/mouse after lipopolysaccharide (LPS) challenged. Survival rate and lung function were used to evaluate the protective effects of PCTR1. Lung inflammation response was observed by morphology and inflammatory cytokines level. Endothelial glycocalyx and its related key enzymes were measured by immunofluorescence, ELISA, and Western blot. Afterward, related-pathways inhibitors were used to identify the mechanism of endothelial glycocalyx response to PCTR1 in mice and human umbilical vein endothelial cells (HUVECs) after LPS administration. Results In vivo, we show that PCTR1 protects mice against lipopolysaccharide (LPS)-induced sepsis, as shown by enhanced the survival and pulmonary function, decreased the inflammatory response in lungs and peripheral levels of inflammatory cytokines such as tumor necrosis factor-α, interleukin-6, and interleukin-1β. Moreover, PCTR1 restored lung vascular glycocalyx and reduced serum heparin sulphate (HS), syndecan-1 (SDC-1), and hyaluronic acid (HA) levels. Furthermore, we found that PCTR1 downregulated heparanase (HPA) expression to inhibit glycocalyx degradation and upregulated exostosin-1 (EXT-1) protein expression to promote glycocalyx reconstitution. Besides, we observed that BAY11-7082 blocked glycocalyx loss induced by LPS in vivo and in vitro, and BOC-2 (ALX antagonist) or EX527 (SIRT1 inhibitor) abolished the restoration of HS in response to PCTR1. Conclusion PCTR1 protects endothelial glycocalyx via ALX receptor by regulating SIRT1/NF-κB pathway, suggesting PCTR1 may be a significant therapeutic target for sepsis-related acute lung injury.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Quanxin Ma ◽  
Kai Wang ◽  
Qinqin Yang ◽  
Shun Ping ◽  
Weichun Zhao ◽  
...  

Veronicastrum axillare is a traditional medical plant in China which is widely used in folk medicine due to its versatile biological activities, especially for its anti-inflammatory effects. However, the detailed mechanism underlying this action is not clear. Here, we studied the protective effects of V. axillare against acute lung injury (ALI), and we further explored the pharmacological mechanisms of this action. We found that pretreatment with V. axillare suppressed the release of proinflammatory cytokines in the serum of ALI mice. Histological analysis of lung tissue demonstrated that V. axillare inhibited LPS-induced lung injury, improved lung morphology, and reduced the activation of nuclear factor-κB (NF-κB) in the lungs. Furthermore, the anti-inflammatory actions of V. axillare were investigated in vitro. We observed that V. axillare suppressed the mRNA expression of interleukin-1β (IL-1β), IL-6, monocyte chemotactic protein-1 (MCP-1), cyclooxygenase-2 (COX-2), and tumor necrosis factor-α (TNF-α) in RAW264.7 cells challenged with LPS. Furthermore, pretreatment of V. axillare in vitro reduced the phosphorylation of p65 and IκB-α which is activated by LPS. In conclusion, our data firstly demonstrated that the anti-inflammatory effects of V. axillare against ALI were achieved through downregulation of the NF-κB signaling pathway, thereby reducing the production of inflammatory mediators.


2014 ◽  
Vol 10 (1) ◽  
pp. 447-452 ◽  
Author(s):  
XIAN WANG ◽  
LEI ZHANG ◽  
WEI DUAN ◽  
BIN LIU ◽  
PING GONG ◽  
...  

2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Renyikun Yuan ◽  
Jia He ◽  
Liting Huang ◽  
Li-Jun Du ◽  
Hongwei Gao ◽  
...  

Acute lung injury (ALI) is an acute inflammatory process in the lung parenchyma. Anemoside B4 (B4) was isolated from Pulsatilla, a plant-based drug against inflammation and commonly applied in traditional Chinese medicine. However, the anti-inflammatory effect and the mechanisms of B4 are not clear. In this study, we explored the potential mechanisms and anti-inflammatory activity of B4 both in vitro and in vivo. The results indicated that B4 suppressed the expression of iNOS, COX-2, NLRP3, caspase-1, and IL-1β. The ELISA assay results showed that B4 significantly restrained the release of inflammatory cytokines like TNF-α, IL-6, and IL-1β in macrophage cells. In addition, B4 rescued mitochondrial membrane potential (MMP) loss in (lipopolysaccharide) LPS plus ATP stimulated macrophage cells. Co-IP and molecular docking results illustrated that B4 disrupted the dimerization of TLR4. For in vivo results, B4 exhibited a protective effect on LPS and bleomycin- (BLM-) induced ALI in mice through suppressing the lesions of lung tissues, the release of inflammatory cytokines, and the levels of white blood cells, neutrophils, and lymphoid cells in the blood. Collectively, B4 has a protective effect on ALI via blocking TLR4 dimerization and NLRP3 inflammasome activation, suggesting that B4 is a potential agent for the treatment of ALI.


2011 ◽  
Vol 25 ◽  
pp. S210 ◽  
Author(s):  
A. Ribeiro ◽  
V. Ferraz-de-Paula ◽  
M.L. Pinheiro ◽  
W.M. Quinteiro-Filho ◽  
A.T. Akamine ◽  
...  

2003 ◽  
Vol 285 (2) ◽  
pp. L283-L292 ◽  
Author(s):  
Melpo Christofidou-Solomidou ◽  
Arnaud Scherpereel ◽  
Rainer Wiewrodt ◽  
Kimmie Ng ◽  
Thomas Sweitzer ◽  
...  

Targeted delivery of drugs to vascular endothelium promises more effective and specific therapies in many disease conditions, including acute lung injury (ALI). This study evaluates the therapeutic effect of drug targeting to PECAM (platelet/endothelial cell adhesion molecule-1) in vivo in the context of pulmonary oxidative stress. Endothelial injury by reactive oxygen species (e.g., H2O2) is involved in many disease conditions, including ALI/acute respiratory distress syndrome and ischemia-reperfusion. To optimize delivery of antioxidant therapeutics, we conjugated catalase with PECAM antibodies and tested properties of anti-PECAM/catalase conjugates in cell culture and mice. Anti-PECAM/catalase, but not an IgG/catalase counterpart, bound specifically to PECAM-expressing cells, augmented their H2O2-degrading capacity, and protected them against H2O2 toxicity. Anti-PECAM/catalase, but not IgG/catalase, rapidly accumulated in the lungs after intravenous injection in mice, where it was confined to the pulmonary endothelium. To test its protective effect, we employed a murine model of oxidative lung injury induced by glucose oxidase coupled with thrombomodulin antibody (anti-TM/GOX). After intravenous injection in mice, anti-TM/GOX binds to pulmonary endothelium and produces H2O2, which causes lung injury and 100% lethality within 7 h. Coinjection of anti-PECAM/catalase protected against anti-TM/GOX-induced pulmonary oxidative stress, injury, and lethality, whereas polyethylene glycol catalase or IgG/catalase conjugates afforded only marginal protective effects. This result validates vascular immunotargeting as a prospective strategy for therapeutic interventions aimed at immediate protective effects, e.g., for augmentation of antioxidant defense in the pulmonary endothelium and treatment of ALI.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Yiyi Jin ◽  
Jianchang Qian ◽  
Xin Ju ◽  
Xiaodong Bao ◽  
Li Li ◽  
...  

Inflammation is a key factor in the pathogenesis of ALI. Therefore, suppression of inflammatory response could be a potential strategy to treat LPS-induced lung injury. Osthole, a natural coumarin extract, has been reported to protect against acute kidney injury through an anti-inflammatory mechanism, but its effect on ALI is poorly understood. In this study, we investigated whether osthole ameliorates inflammatory sepsis-related ALI. Results from in vitro studies indicated that osthole treatment inhibited the LPS-induced inflammatory response in mouse peritoneal macrophages through blocking the nuclear translocation of NF-κB. Consistently, the in vivo studies indicated that osthole significantly prolonged the survival of septic mice which was accompanied by inflammation suppression. In the ALI mouse model, osthole effectively inhibited the development of lung tissue injury, leukocytic recruitment, and cytokine productions, which was associated with inhibition of NF-κB nuclear translocation. These findings provide evidence that osthole was a potent inhibitor of NF-κB and inflammatory injury and suggest that it could be a promising anti-inflammatory agent for therapy of septic shock and acute lung injury.


Sign in / Sign up

Export Citation Format

Share Document