Hypovolaemia after glucose/insulin infusions in volunteers

2008 ◽  
Vol 115 (12) ◽  
pp. 371-378 ◽  
Author(s):  
Dan Berndtson ◽  
Joel Olsson ◽  
Robert G. Hahn

High-dose intravenous infusion of 5% glucose promotes rebound hypoglycaemia and hypovolaemia in healthy volunteers. To study whether such effects occur in response to glucose/insulin, 12 healthy firemen (mean age, 39 years) received three infusions over 1–2 h that contained 20 ml of 2.5% glucose/kg of body weight, 5 ml of 10% glucose/kg of body weight with 0.05 unit of rapid-acting insulin/kg of body weight, and 4 ml of 50% glucose/kg of body weight with 1 unit of insulin/kg of body weight. The plasma glucose concentration and plasma dilution were compared at 5–10 min intervals over 4 h. Regardless of the amount of administered fluid and whether insulin was given, the plasma glucose concentration decreased to hypoglycaemic levels within 30 min of the infusion ending. The plasma dilution closely mirrored plasma glucose and became negative by approx. 5%, which indicates a reduction in the plasma volume. These alterations were only partially restored during the follow-up period. A linear relationship between plasma glucose and plasma dilution was most apparent when the infused glucose had been dissolved in only a small amount of fluid. For the strongest glucose/insulin solution, this linear relationship had a correlation coefficient of 0.77 (n=386, P<0.0001). The findings of the present study indicate that a redistribution of water due to the osmotic strength of the glucose is the chief mechanism accounting for the hypovolaemia. It is concluded that infusions of 2.5%, 10% and 50% glucose, with and without insulin, in well-trained men were consistently followed by long-standing hypoglycaemia and also by hypovolaemia, which averaged 5%. These results emphasize the relationship between metabolism and fluid balance.

1992 ◽  
Vol 12 (2) ◽  
pp. 270-280 ◽  
Author(s):  
Kenichiro Katsura ◽  
Anders Ekholm ◽  
Bo K. Siesjö

The amount of lactate formed during ischemia determines the rise in tissue Pco2 (Ptco2). Conflicting results exist on the relationship between lactate and Ptco2. The objective of this study was to settle this issue. We varied the preischemic plasma glucose concentration of normo- and hypercapnic rats, assessed tissue lactate and total CO2 contents, and determined the Pco2/lactate relationship over the lactate range 2–40 mmol kg−1. The results showed that whatever the equilibration time, the Pco2/lactate relationship was linear. The results obtained could be reproduced by a theoretical buffer system that mimics the buffering behavior of intracellular fluid. Our results bear on the question of whether compartmentation of H+ occurs during ischemia, with glial cells becoming more acid than neurons. A discontinuous Pco2/lactate relationship, with a constant Pco2 above a certain lactate content, would support this contention. Since our results demonstrate a linear relationship between lactate and Pco2 over the lactate range 2–40 mmol kg−1, they considerably weaken any argument for gross compartmentation of H+.


Author(s):  
Evelien Dekker ◽  
Johannes A. Romijn ◽  
Catherine Waruiru ◽  
Mariëtte T. Ackermans ◽  
Gerrit J. Weverling ◽  
...  

2011 ◽  
Vol 106 (S1) ◽  
pp. S101-S104 ◽  
Author(s):  
Adrian K. Hewson-Hughes ◽  
Matthew S. Gilham ◽  
Sarah Upton ◽  
Alison Colyer ◽  
Richard Butterwick ◽  
...  

Data from intravenous (i.v.) glucose tolerance tests suggest that glucose clearance from the blood is slower in cats than in dogs. Since different physiological pathways are activated following oral administration compared with i.v. administration, we investigated the profiles of plasma glucose and insulin in cats and dogs following ingestion of a test meal with or without glucose. Adult male and female cats and dogs were fed either a high-protein (HP) test meal (15 g/kg body weight; ten cats and eleven dogs) or a HP+glucose test meal (13 g/kg body-weight HP diet+2 g/kg body-weight d-glucose; seven cats and thirteen dogs) following a 24 h fast. Marked differences in plasma glucose and insulin profiles were observed in cats and dogs following ingestion of the glucose-loaded meal. In cats, mean plasma glucose concentration reached a peak at 120 min (10·2, 95 % CI 9·7, 10·8 mmol/l) and returned to baseline by 240 min, but no statistically significant change in plasma insulin concentration was observed. In dogs, mean plasma glucose concentration reached a peak at 60 min (6·3, 95 % CI 5·9, 6·7 mmol/l) and returned to baseline by 90 min, while plasma insulin concentration was significantly higher than pre-meal values from 30 to 120 min following the glucose-loaded meal. These results indicate that cats are not as efficient as dogs at rapidly decreasing high blood glucose levels and are consistent with a known metabolic adaptation of cats, namely a lack of glucokinase, which is important for both insulin secretion and glucose uptake from the blood.


1978 ◽  
Vol 54 (4) ◽  
pp. 431-437 ◽  
Author(s):  
E. A. Elebute ◽  
R. A. Little

1. The effects of streptozotocin-diabetes on the local and general responses to a 4 h period of bilateral hind-limb ischaemia in the rat have been investigated. The rats were injured 48 h after the intravenous injection of the streptozotocin. 2. Less fluid was lost from the circulation into the injured limbs after injury in the diabetic rats and this was directly related to the severity of the diabetes, but could not be explained by dehydration. However, when the diabetic and non-diabetic injured rats were considered together there was a significant negative correlation between either plasma osmolality or plasma glucose concentration and water content in the injured hind limb. 3. The relationship between plasma glucose concentration and plasma osmolality was changed by injury such that, particularly in the injured diabetic rats, plasma osmolality at a given glucose concentration was higher than that predicted from the relationship between these variables in the uninjured rat.


2020 ◽  
Vol 33 (6) ◽  
pp. 767-775
Author(s):  
Eda Mengen ◽  
Seyit Ahmet Uçaktürk

AbstractBackgroundIn this study, we aimed to evaluate the relationship between the 1-h plasma glucose (PG) level in the oral glucose tolerance test (OGTT) and conventional glycemic parameters, indices evaluating beta-cell functions, and cardiometabolic risk factors.MethodsThe records of 532 obese patients who were followed up in the Pediatric Endocrinology Polyclinic and who underwent standard OGTT were evaluated retrospectively. All patients were divided into two groups according to OGTT data as the 1-h plasma glucose concentration <155 mg/dL (n=329) and ≥155 mg/dL (n=203). Patients with normal glucose tolerance (NGT) were divided into two groups according to the 1-h PG level, as 218 patients with NGT 1 h-low (<155 mg/dL) and 53 patients with high NGT 1 h-high (≥155 mg/dL).ResultsThere was a statistically significant difference between the lipid profiles of individuals with NGT 1 h-low (<155 mg/dL) and individuals with NGT 1 h-high (≥155 mg/dL) (p<0.001). Total cholesterol, LDL cholesterol, and triglyceride levels were higher, while HDL cholesterol levels were lower in individuals with NGT 1 h-high (≥155 mg/dL). The indices evaluating beta-cell functions were significantly higher in individuals with NGT 1 h-low (<155 mg/dL).ConclusionAs a result, a plasma glucose concentration above or equal to 155 mg/dL at 1 h during an OGTT is associated with a worse clinical phenotype characterized by changes in insulin sensitivity and β-cell function. Therefore, this threshold value can predict the progression of prediabetes in obese young people with NGT.


2003 ◽  
Vol 285 (3) ◽  
pp. E577-E583 ◽  
Author(s):  
Lei Li ◽  
Masaharu Seno ◽  
Hidenori Yamada ◽  
Itaru Kojima

Betacellulin (BTC) induces differentiation of pancreatic β-cells and promotes regeneration of β-cells in experimental diabetes. The present study was conducted to determine if BTC improved glucose metabolism in severe diabetes induced by a high dose of streptozotocin (STZ) in mice. Male ICR mice were injected with 200 μg/g ip STZ, and various doses of BTC were administered daily for 14 days. The plasma glucose concentration increased to a level of >500 mg/dl in STZ-injected mice. BTC (0.2 μg/g) significantly reduced the plasma glucose concentration, but a higher concentration was ineffective. The effect of BTC was marked by day 4 but became smaller on day 6 or later. The plasma insulin concentration and the insulin content were significantly higher in mice treated with 0.1 and 0.2 μg/g BTC. BTC treatment significantly increased the number of β-cells in each islet as well as the number of insulin-positive islets. Within islets, the numbers of 5-bromo-2-deoxyuridine/somatostatin-positive cells and pancreatic duodenal homeobox-1/somatostatin-positive cells were significantly increased by BTC. These results indicate that BTC improved hyperglycemia induced by a high dose of STZ by promoting neoformation of β-cells, mainly from somatostatin-positive islet cells.


Sign in / Sign up

Export Citation Format

Share Document