Acute regulation of pancreatic islet microcirculation and glycaemia by telmisartan and ramipril: discordant effects between normal and Type 2 diabetic rats

2013 ◽  
Vol 125 (9) ◽  
pp. 433-438 ◽  
Author(s):  
Anna Olverling ◽  
Zhen Huang ◽  
Thomas Nyström ◽  
Åke Sjöholm

Diabetic patients are often treated with an ACEi (angiotensin-converting enzyme inhibitor) or angiotensin receptor antagonist against hypertension or albuminuria. These drugs also have a positive impact on glucose tolerance, but the mechanism for this remains elusive. Hypothesizing a positive non-additive effect, we studied whether the angiotensin receptor antagonist telmisartan or the ACEi ramipril acutely influence insulin secretion and glycaemia in vivo in healthy and Type 2 diabetic rats through effects on islet blood perfusion. Telmisartan and ramipril were injected intravenously into anaesthetized non-diabetic Wistar rats or Type 2 diabetic GK (Goto–Kakizaki) rats. In non-diabetic Wistar rats, neither whole PBF (pancreatic blood flow) nor IBF (islet blood flow) were significantly influenced by telmisartan and ramipril, alone or in combination. Renal blood flow was enhanced significantly by telmisartan and ramipril when used in combination, whereas ABF (adrenal blood flow) was not affected by any of the drugs. Telmisartan and ramipril both significantly increased serum insulin levels, but did not influence glycaemia. In Type 2 diabetic GK rats, both whole PBF and IBF were significantly decreased by telmisartan and ramipril, but only when used in combination. Renal blood flow was enhanced significantly by telmisartan and ramipril alone, but not when used in combination, whereas ABF was not affected by any of the drugs. Telmisartan and ramipril both significantly decreased serum insulin levels, and non-additively elevated blood glucose levels. In conclusion, the present study suggests that a local pancreatic RAS (renin–angiotensin system), sensitive to acute administration of telmisartan and ramipril, controls pancreatic IBF and insulin secretion and thereby has an impact on glucose tolerance. Our findings indicate unexpected significant differences in the effects of these agents on islet microcirculation, in vivo insulin secretion and glycaemia between healthy and Type 2 diabetic rats.

2011 ◽  
Vol 300 (4) ◽  
pp. H1174-H1181 ◽  
Author(s):  
Julia Grönros ◽  
Christian Jung ◽  
Jon O. Lundberg ◽  
Ruha Cerrato ◽  
Claes-Göran Östenson ◽  
...  

Nitric oxide (NO) is crucial for maintaining normal endothelial function and vascular integrity. Increased arginase activity in diabetes might compete with NO synthase (NOS) for their common substrate arginine, resulting in diminished production of NO. The aim of this study was to evaluate coronary microvascular function in type 2 diabetic Goto-Kakizaki (GK) rats using in vivo coronary flow velocity reserve (CFVR) and the effect of arginase inhibition to restore vascular function. Different groups of GK and Wistar rats were given vehicle, the arginase inhibitor Nω-hydroxy-nor-l-arginine (nor-NOHA), l-arginine, and the NOS inhibitor NG-monomethyl -l-arginine (l-NMMA). GK rats had impaired CFVR compared with Wistar rats (1.31 ± 0.09 vs. 1.87 ± 0.05, P < 0.001). CFVR was restored by nor-NOHA treatment compared with vehicle in GK rats (1.71 ± 0.13 vs. 1.23 ± 0.12, P < 0.05) but remained unchanged in Wistar rats (1.88 ± 0.10 vs. 1.79 ± 0.16). The beneficial effect of nor-NOHA in GK rats was abolished after NOS inhibition. CFVR was not affected by arginine compared with vehicle. Arginase II expression was increased in the aorta and myocardium from GK rats compared with Wistar rats. Citrulline-to-ornithine and citrulline-to-arginine ratios measured in plasma increased significantly more in GK rats than in Wistar rats after nor-NOHA treatment, suggesting a shift of arginine utilization from arginase to NOS. In conclusion, coronary artery microvascular function is impaired in the type 2 diabetic GK rat. Treatment with nor-NOHA restores the microvascular function by a mechanism related to increased utilization of arginine by NOS and increased NO availability.


Molecules ◽  
2019 ◽  
Vol 24 (1) ◽  
pp. 190 ◽  
Author(s):  
Sevda Gheibi ◽  
Sajad Jeddi ◽  
Khosrow Kashfi ◽  
Asghar Ghasemi

Hydrogen sulfide (H2S) is involved in the pathophysiology of type 2 diabetes. Inhibition and stimulation of H2S synthesis has been suggested to be a potential therapeutic approach for type 2 diabetes. The aim of this study was therefore to determine the effects of long-term sodium hydrosulfide (NaSH) administration as a H2S releasing agent on carbohydrate metabolism in type 2 diabetic rats. Type 2 diabetes was established using high fat-low dose streptozotocin. Rats were treated for 9 weeks with intraperitoneal injections of NaSH (0.28, 0.56, 1.6, 2.8, and 5.6 mg/kg). Serum glucose was measured weekly for one month and then at the end of the study. Serum insulin was measured before and after the treatment. At the end of the study, glucose tolerance, pyruvate tolerance and insulin secretion were determined and blood pressure was measured. In diabetic rats NaSH at 1.6–5.6 mg/kg increased serum glucose (11%, 28%, and 51%, respectively) and decreased serum insulin, glucose tolerance, pyruvate tolerance and in vivo insulin secretion. In controls, NaSH only at 5.6 mg/kg increased serum glucose and decreased glucose tolerance, pyruvate tolerance and insulin secretion. Chronic administration of NaSH in particular at high doses impaired carbohydrate metabolism in type 2 diabetic rats.


2021 ◽  
Author(s):  
Heera Ram ◽  
Pramod Kumar ◽  
Ashok Purohit ◽  
Priya Kashyap ◽  
Suresh Kumar ◽  
...  

Abstract Context: Withania coagulans (Stocks) Dunal fruits are used in the therapeutics of several ailments due to possessing of potent phytoconstituents which is also used traditionally for curing the diabetes. Objective: The present study was assessing the amelioration potential of the phytochemicals of an ethanol fruit extract of Withania coagulans (Stocks) Dunal in the HOMA (Homeostatic model assessment) indices and pancreatic endocrinal tissues by inhibition of DPP-4 and antioxidants activities.Material and methods: The identification of phytoconstituents of the test extract was performed by LCMS. Further, assessments of in-vitro, in-vivo and in-silico were achieved by following standard methods. In-vivo studies were conducted on type-2 diabetic ratsResults: The chosen extract inhibited DPP-4 activity by 63.2% in an in vitro assay as well as significantly inhibit serum DPP-4 levels. Accordingly, the administration of the ethanol fruit extract resulted in a significant (𝑃≤ 0.001) alterations in the lipid profile, antioxidant levels, and HOMA indices. Moreover, pancreatic endocrinal tissues (islet of Langerhans) appeared to have the restoration of normal histoarchitecture as evidenced by increased cellular mass. Molecular docking (Protein - ligands) of identified phytoconstituents with DPP-4 (target enzyme) shown incredibly low binding energy (Kcal/mol) as required for ideal interactions. ADMET analysis of the pharmacokinetics of the identified phytoconstituents indicated an ideal profile as per Lipinski laws. Conclusion: It can be concluded that the phytoconstituents of an ethanol fruit extract of Withania coagulans have the potential to inhibit DPP-4 which result in improved glucose homeostasis and restoration of pancreatic endocrinal tissues in type-2 diabetic rats.


2020 ◽  
Author(s):  
Heera Ram ◽  
Pramod Kumar ◽  
Ashok Purohit ◽  
Priya Kashyap ◽  
Suresh Kumar ◽  
...  

Abstract Context: Withania coagulans (Stocks) Dunal fruits are used in the therapeutics of several ailments due to possessing of potent phytoconstituents which is also used traditionally for curing the diabetes. Objective: The present study was assessing the amelioration potential of the phytochemicals of an ethanol fruit extract of Withania coagulans (Stocks) Dunal in the HOMA (Homeostatic model assessment) indices and pancreatic endocrinal tissues by inhibition of DPP-4 and antioxidants activities.Material and methods: The identification of phytoconstituents of phytochemicals of the test extract was performed by LCMS. Further, assessments of in-vitro, in-vivo and in-silico were achieved by following standard methods. In-vivo studies were conducted on type-2 diabetic ratsResults: The chosen extract inhibited DPP-4 activity by 63.2% in an in vitro assay. Accordingly, the administration of the ethanol fruit extract resulted in a significant (𝑃≤ 0.001) alterations in the lipid profile, antioxidant levels, and HOMA indices. Moreover, pancreatic endocrinal tissues (islet of Langerhans) appeared to have the restoration of normal histoarchitecture as evidenced by increased cellular mass. Molecular docking (Protein - ligands) of identified phytoconstituents with DPP-4 (target enzyme) shown incredibly low binding energy (Kcal/mol) as required for ideal interactions. ADMET analysis of the pharmacokinetics of the identified phytoconstituents indicated an ideal profile as per Lipinski laws. Conclusion: It can be concluded that the phytoconstituents of an ethanol fruit extract of Withania coagulans have the potential to inhibit DPP-4 which result in improved glucose homeostasis and restoration of pancreatic endocrinal tissues in type-2 diabetic rats.


2012 ◽  
Vol 2 ◽  
pp. S596-S602 ◽  
Author(s):  
Subramaniam Ramachandran ◽  
Koikaramparambil Robert Naveen ◽  
Baskaran Rajinikanth ◽  
Mohammad Akbar ◽  
Aiyalu Rajasekaran

2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
Mehdi Bin Samad ◽  
Ashraf Ul Kabir ◽  
Ninadh Malrina D'Costa ◽  
Farjana Akhter ◽  
Arif Ahmed ◽  
...  

We measured a vast range of parameters, in an attempt to further elucidate previously claimed antihyperglycemic activity ofButea monosperma. Our study clearly negates the possibility of antidiabetic activity by inhibited gastrointestinal enzyme action or by reduced glucose absorption. Reduction of fasting and postprandial glucose level was reconfirmed (P<0.05). Improved serum lipid profile via reduced low density lipoprotein (LDL), cholesterol, triglycerides (TG), and increased high density lipoprotein (HDL) was also reestablished (P<0.05). Significant insulin secretagogue activity ofB. monospermawas found in serum insulin assay ofB. monospermatreated type 2 diabetic rats (P<0.01). This was further ascertained by our study on insulin secretion on isolated rat islets (P<0.05). Improved sensitivity of glucose was shown by the significant increase in hepatic glycogen deposition (P<0.05). Hence, we concluded that antihyperglycemic activity ofB. monospermawas mediated by enhanced insulin secretion and enhanced glycogen formation in the liver.


Sign in / Sign up

Export Citation Format

Share Document