scholarly journals Effects of Hydrogen Sulfide on Carbohydrate Metabolism in Obese Type 2 Diabetic Rats

Molecules ◽  
2019 ◽  
Vol 24 (1) ◽  
pp. 190 ◽  
Author(s):  
Sevda Gheibi ◽  
Sajad Jeddi ◽  
Khosrow Kashfi ◽  
Asghar Ghasemi

Hydrogen sulfide (H2S) is involved in the pathophysiology of type 2 diabetes. Inhibition and stimulation of H2S synthesis has been suggested to be a potential therapeutic approach for type 2 diabetes. The aim of this study was therefore to determine the effects of long-term sodium hydrosulfide (NaSH) administration as a H2S releasing agent on carbohydrate metabolism in type 2 diabetic rats. Type 2 diabetes was established using high fat-low dose streptozotocin. Rats were treated for 9 weeks with intraperitoneal injections of NaSH (0.28, 0.56, 1.6, 2.8, and 5.6 mg/kg). Serum glucose was measured weekly for one month and then at the end of the study. Serum insulin was measured before and after the treatment. At the end of the study, glucose tolerance, pyruvate tolerance and insulin secretion were determined and blood pressure was measured. In diabetic rats NaSH at 1.6–5.6 mg/kg increased serum glucose (11%, 28%, and 51%, respectively) and decreased serum insulin, glucose tolerance, pyruvate tolerance and in vivo insulin secretion. In controls, NaSH only at 5.6 mg/kg increased serum glucose and decreased glucose tolerance, pyruvate tolerance and insulin secretion. Chronic administration of NaSH in particular at high doses impaired carbohydrate metabolism in type 2 diabetic rats.

2013 ◽  
Vol 125 (9) ◽  
pp. 433-438 ◽  
Author(s):  
Anna Olverling ◽  
Zhen Huang ◽  
Thomas Nyström ◽  
Åke Sjöholm

Diabetic patients are often treated with an ACEi (angiotensin-converting enzyme inhibitor) or angiotensin receptor antagonist against hypertension or albuminuria. These drugs also have a positive impact on glucose tolerance, but the mechanism for this remains elusive. Hypothesizing a positive non-additive effect, we studied whether the angiotensin receptor antagonist telmisartan or the ACEi ramipril acutely influence insulin secretion and glycaemia in vivo in healthy and Type 2 diabetic rats through effects on islet blood perfusion. Telmisartan and ramipril were injected intravenously into anaesthetized non-diabetic Wistar rats or Type 2 diabetic GK (Goto–Kakizaki) rats. In non-diabetic Wistar rats, neither whole PBF (pancreatic blood flow) nor IBF (islet blood flow) were significantly influenced by telmisartan and ramipril, alone or in combination. Renal blood flow was enhanced significantly by telmisartan and ramipril when used in combination, whereas ABF (adrenal blood flow) was not affected by any of the drugs. Telmisartan and ramipril both significantly increased serum insulin levels, but did not influence glycaemia. In Type 2 diabetic GK rats, both whole PBF and IBF were significantly decreased by telmisartan and ramipril, but only when used in combination. Renal blood flow was enhanced significantly by telmisartan and ramipril alone, but not when used in combination, whereas ABF was not affected by any of the drugs. Telmisartan and ramipril both significantly decreased serum insulin levels, and non-additively elevated blood glucose levels. In conclusion, the present study suggests that a local pancreatic RAS (renin–angiotensin system), sensitive to acute administration of telmisartan and ramipril, controls pancreatic IBF and insulin secretion and thereby has an impact on glucose tolerance. Our findings indicate unexpected significant differences in the effects of these agents on islet microcirculation, in vivo insulin secretion and glycaemia between healthy and Type 2 diabetic rats.


2012 ◽  
Vol 11 (1) ◽  
pp. 19-24 ◽  
Author(s):  
M S Hossain ◽  
S Sokeng ◽  
M Shoeb ◽  
K Hasan ◽  
M Mosihuzzaman ◽  
...  

Irvingia gabonensis (Aubry-Lacomate Ex. Ororke), Baill (African wild mango/bush mango) seeds are   widely used in cooking as a sauce in Cameroon and in most parts of tropical Africa for the treatment of a number of ailments. In this study normal rat food was incorporated with I. gabonensis seed powder (10%) and oil free seed powder (5%) and their chronic effects on streptozotocin induced Type 2 diabetic rats were studied. Oral consumption of food incorporated with seed powder significantly reduced serum glucose level on the 28th day (p<0.01) which was   comparable with glibenclamide treated group. Food with oil free seed powder showed 24% fall in glucose level on the 28th day. Fasting serum insulin increased significantly (p<0.001) in glibenclamide and oil free seed powder treated (p<0.008) groups. No effect was observed in the seed powder treated group. Liver glycogen content increased in the glibenclamide treated group but no significant change was observed in both powder and oil free seed powder   treated groups. On the 28th day seed powder treated group significantly lowered serum TG level (p<0.033) and 48% was lowered by oil free seed powder. It is concluded that seed powder as well as oil free seed powder lowered blood glucose level in Type 2 diabetic model rats. It seems to act as an insulinomimetic and/or insulin sensitizing agent. DOI: http://dx.doi.org/10.3329/dujps.v11i1.12482 Dhaka Univ. J. Pharm. Sci. 11(1): 19-24, 2012 (June)


2005 ◽  
Vol 153 (6) ◽  
pp. 971-979 ◽  
Author(s):  
Fumihiko Horio ◽  
Shin Teradaira ◽  
Tsunehiko Imamura ◽  
Rea Victoria P Anunciado ◽  
Misato Kobayashi ◽  
...  

Objectives: This study aimed to develop a novel type 2 diabetes model designated the HND (Horio–Niki diabetic) mouse, by transferring diabetogenic genes from wild castaneus mice (Mus musculus castaneus) captured in the Philippines into laboratory mice (C57BL/6J:B6). Methods: Offspring from the cross between a wild male and a B6 female were backcrossed to the sire. One male backcross which exhibited fasting hyperglycemia was crossed with a B6 female to comprise the fundamental stock (F0). Thereafter, full-sib mating was performed, and mice with impaired glucose tolerance were selected and bred from the F2 generation. Characterization of the phenotype of HND mice and insulin release from their islets was evaluated with F12 generation males. Results: The male HND mice were lean, and spontaneously exhibited impaired glucose tolerance at a high incidence rate at 6 weeks of age. Their serum insulin levels in response to intraperitoneal glucose were markedly attenuated. However, glucose-induced insulin release from isolated HND islets was not affected. Notably, inhibition of glucose-induced insulin release by epinephrine was more pronounced in HND islets than in B6 islets. Moreover, in vivo treatment of HND mice with the α2-adrenergic receptor agonist clonidine resulted in marked hypoinsulinemic hyperglycemia. Conclusions: We suggest the HND mouse may be a distinctive and useful model for type 2 diabetes with impaired neural control of insulin secretion.


2003 ◽  
Vol 90 (5) ◽  
pp. 853-864 ◽  
Author(s):  
Chris J. Seal ◽  
Mark E. Daly ◽  
Lois C. Thomas ◽  
Wendy Bal ◽  
Anne M. Birkett ◽  
...  

The objective of the present study was to investigate the effects of starches with differing rates of hydrolysis on exposure to pancreatin in vitro on postprandial carbohydrate metabolism in healthy subjects and in subjects with type 2 diabetes. Two test starches, prepared from uncooked native granular starch products, and naturally enriched with 13C, were consumed in a randomized crossover design by eight healthy and thirteen type 2 diabetic subjects. One starch was characterized in vitro as being rapidly hydrolysed (R, 94% after 180min), and the other was more slowly hydrolysed (S, 51% after 180min). Each subject consumed 50g of each test starch. In addition, the type 2 diabetic subjects consumed 89·7g of the S starch on a separate occasion. Blood samples were taken at 10min intervals for 3h, and at 20min intervals for a further 3h during a 6h postprandial period. Breath 13CO2 enrichment was measured at the same time points, and indirect calorimetry was performed for seven 20min sessions immediately before and during the 6h postprandial period. With the R starch, plasma glucose concentrations and serum insulin concentrations rose faster and the maximum glucose change was approximately 1·8 times that for the S starch, averaged across both subject groups. The areas under the curves for glucose and insulin were, respectively, 1·7 and 1·8 times higher for the R starch compared with the S starch, averaged across both subject groups. The rate of 13CO2 output and the proportion of 13C recovered in breath after consumption of the R starch was similar for both subject groups. The results provide evidence that starches which have different rates of hydrolysis in vitro result in different patterns of glycaemia and insulinaemia in both healthy adults and in diet-controlled type 2 diabetic subjects. Data from the hydrolysis of novel starch products in vitro, therefore, are useful in predicting glycaemic responses in vivo.


2020 ◽  
Vol 20 (3) ◽  
pp. 464-478 ◽  
Author(s):  
Yomna M. Yehya ◽  
Abdelaziz M. Hussein ◽  
Khaled Ezam ◽  
Elsayed A. Eid ◽  
Eman M. Ibrahim ◽  
...  

Objectives:: The present study was designed to investigate the effects of renin angiotensin system (RAS) blockade on cardiac arrhythmias and sympathetic nerve remodelling in heart tissues of type 2 diabetic rats. Methods:: Thirty-two male Sprague Dawley rats were randomly allocated into 4 equal groups; a) normal control group: normal rats, b) DM group; after type 2 diabetes induction, rats received 2ml oral saline daily for 4 weeks, c) DM+ ACEi: after type 2 diabetes induction, rats were treated with enalapril (10 mg/kg, orally for 4 weeks) and d) DM+ ARBs: after type 2 diabetes induction, rats were treated with losartan (30 mg/kg, orally for 4 weeks). Results:: In type 2 diabetic rats, the results demonstrated significant prolongation in Q-T interval and elevation of blood sugar, HOMA-IR index, TC, TGs, LDL, serum CK-MB, myocardial damage, myocardial MDA, myocardial norepinephrine and tyrosine hydroxylase (TH) density with significant reduction in serum HDL, serum insulin and myocardial GSH and CAT. On the other hand, blockade of RAS at the level of either ACE by enalapril or angiotensin (Ag) receptors by losartan resulted in significant improvement in ECG parameters (Q-T), cardiac enzymes (CK-MB), cardiac morphology, myocardial oxidative stress (low MDA, high CAT and GSH) and myocardial TH density. Conclusions:: RAS plays a role in the cardiac sympathetic nerve sprouting and cardiac arrhythmias induced by type 2 DM and its blockade might have a cardioprotective effect via attenuation of sympathetic nerve fibres remodelling, myocardial norepinephrine contents and oxidative stress.


2021 ◽  
pp. 153537022110094
Author(s):  
Ibiye Owei ◽  
Nkiru Umekwe ◽  
Frankie Stentz ◽  
Jim Wan ◽  
Sam Dagogo-Jack

The ability to predict prediabetes, which affects ∼90 million adults in the US and ∼400 million adults worldwide, would be valuable to public health. Acylcarnitines, fatty acid metabolites, have been associated with type 2 diabetes risk in cross-sectional studies of mostly Caucasian subjects, but prospective studies on their link to prediabetes in diverse populations are lacking. Here, we determined the association of plasma acylcarnitines with incident prediabetes in African Americans and European Americans enrolled in a prospective study. We analyzed 45 acylcarnitines in baseline plasma samples from 70 adults (35 African-American, 35 European-American) with incident prediabetes (progressors) and 70 matched controls (non-progressors) during 5.5-year (mean 2.6 years) follow-up in the Pathobiology of Prediabetes in a Biracial Cohort (POP-ABC) study. Incident prediabetes (impaired fasting glucose/impaired glucose tolerance) was confirmed with OGTT. We measured acylcarnitines using tandem mass spectrometry, insulin sensitivity by hyperinsulinemic euglycemic clamp, and insulin secretion using intravenous glucose tolerance test. The results showed that progressors and non-progressors during POP-ABC study follow-up were concordant for 36 acylcarnitines and discordant for nine others. In logistic regression models, beta-hydroxy butyryl carnitine (C4-OH), 3-hydroxy-isovaleryl carnitine/malonyl carnitine (C5-OH/C3-DC), and octenoyl carnitine (C8:1) were the only significant predictors of incident prediabetes. The combined cut-off plasma levels of <0.03 micromol/L for C4-OH, <0.03 micromol/L for C5-OH/C3-DC, and >0.25 micromol/L for C8:1 acylcarnitines predicted incident prediabetes with 81.9% sensitivity and 65.2% specificity. Thus, circulating levels of one medium-chain and two short-chain acylcarnitines may be sensitive biomarkers for the risk of incident prediabetes among initially normoglycemic individuals with parental history of type 2 diabetes.


2020 ◽  
Vol 45 (4) ◽  
pp. 397-404
Author(s):  
Tugba Gurpinar Çavuşoğlu ◽  
Ertan Darıverenli ◽  
Kamil Vural ◽  
Nuran Ekerbicer ◽  
Cevval Ulman ◽  
...  

AbstractObjectivesType 2 diabetes is a common metabolic disease and anxiety disorders are very common among diabetics. Buspirone is used in the treatment of anxiety, also having blood glucose-lowering effects. The aim of the study was to investigate the effects of buspirone on the glucose and lipid metabolism as well as vascular function in type 2 diabetic rats.MethodsA type 2-diabetic model was induced through a high-fat diet for eight weeks followed by the administration of low-dose streptozotocin (35 mg/kg, intraperitoneal) in rats. Buspirone was given at two different doses (1.5 mg/kg/d and 5 mg/kg/d) and combined with metformin (300 mg/kg/d). The fasting glucose and insulin levels, lipid profile were analyzed, and vascular response measured from the thoracic aorta was also evaluated.ResultsBoth doses of buspirone caused a significant improvement in fasting blood glucose levels. In particular, the buspirone treatment, combined with metformin, improved endothelial dysfunction and was found to be correlated with decreased nitrate/nitrite levels.ConclusionsBuspirone may be effective in the treatment of type 2 diabetes, either alone or in combination with other treatments, particularly in terms of endothelial dysfunction, inflammation and impaired blood glucose, and insulin levels.


Background and Aims: SNARE proteins are composed of a combination of SNAP-23, Stx-4, and VAMP-2 isoforms that are significantly expressed in skeletal muscle. These proteins control the transport of GLUT4 to the cell membranes. The modifications in the expression of SNARE proteins can cause Type 2 diabetes. The present study aimed to assess the effect of metformin on the expression of these proteins in rats. Materials and Methods: For the purpose of the study, 40 male Wistar rats were randomly selected. Streptozotocin and Nicotinamide were used for the induction of type 2 diabetes. The animals were assigned to five groups (n=8), including healthy and diabetic groups as control, as well as three experimental groups which were treated with different doses of metformin (100, 150, and 200 mg/kg body weight) for 30 days. The quantitative reverse transcription PCR (RT-qPCR) method was applied to evaluate the expression of SNARE complex proteins.. Results: Based on the results, metformin (100, 150, and 200 mg/kg body weight) decreased serum glucose levels and increased serum insulin levels. This difference in dose of 200 mg/kg body weight was statistically significant (P<0.05). Moreover, all three doses of metformin increased the expression of SNAP- 23, syntaxin-4, and VAMP-2 proteins in skeletal muscle tissue. Metformin at a dose of 200 mg/kg body weight demonstrated the most significant effects (P<0.05). Conclusion: As evidenced by the results of the current study, another anti-diabetic mechanism of metformin is to increase the expression of SNARE proteins, which effectively improves insulin resistance and lowers blood glucose.


Sign in / Sign up

Export Citation Format

Share Document