scholarly journals Fish oil omega-3 fatty acids partially prevent lipid-induced insulin resistance in human skeletal muscle without limiting acylcarnitine accumulation

2014 ◽  
Vol 127 (5) ◽  
pp. 315-322 ◽  
Author(s):  
Francis B. Stephens ◽  
Buddhike Mendis ◽  
Chris E. Shannon ◽  
Scott Cooper ◽  
Catharine A. Ortori ◽  
...  

Intravenous infusion of lipid into healthy males caused insulin resistance. Addition of fish oil omega-3 polyunsaturated fatty acids to the lipid infusion partially prevented the insulin resistance. This effect was not due to differences in muscle acylcarnitine content.

2019 ◽  
Vol 10 ◽  
Author(s):  
Christopher J. Gerling ◽  
Kazutaka Mukai ◽  
Adrian Chabowski ◽  
George J. F. Heigenhauser ◽  
Graham P. Holloway ◽  
...  

2019 ◽  
Vol 6 (1) ◽  
pp. 1796-1803
Author(s):  
Rashmi S. Chouthe ◽  
◽  
Santosh D Shelke ◽  
Rahul P. Kshirsagar ◽  
◽  
...  

2021 ◽  
Vol 99 (Supplement_3) ◽  
pp. 314-315
Author(s):  
Lillian L Okamoto ◽  
Caleb C Reichhardt ◽  
Sierra Lopez ◽  
Anthony F Alberto ◽  
Reganne K Briggs ◽  
...  

Abstract Omega-3 fatty acids have immunomodulatory and anti-inflammatory effects. The objective of this project was to determine the effects of fish oil, a source of omega-3 fatty acids, on genes involved in inflammation and growth of skeletal muscle tissue after an LPS challenge. Male Landrace-New Hampshire weaned piglets (BW 8.21±0.83 kg) were used in a randomized complete block design and assigned to two treatments: 1) basal diet (n=7) and 2) basal diet plus 3% fish oil added (n = 7). Treatments were fed for 35 d. On d 34, an LPS challenge was performed and 24 h later, piglets were euthanized and skeletal muscle samples were collected from the longissimus lumborum and biceps femoris. Total mRNA was isolated and markers of inflammation [cyclophilin (Cyclo), nuclear factor kappa beta subunit-1 (NF-kB), tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6)], skeletal muscle growth [paired box transcription factor-7 (Pax7), myogenic factor-5 (Myf5), myoblast determination factor-1 (MyoD), myogenin (MyoG)] and adipose growth (peroxisome proliferator activated receptor (PPARy), leptin, and adiponectin) were analyzed. Cyclophilin abundance was increased (P = 0.03) in fish-oil piglets compared to control piglets. Other markers of inflammation (TNF-α, IL-6, NF-kB) were not affected (P > 0.05) by fish-oil supplementation. Abundance of Myf5 was lower (P = 0.03) in fish oil piglets than control piglets. Other myogenic regulatory factors (Pax7, MyoD, MyoG) were not (P > 0.05) altered by treatment. Abundance of PPARy, leptin or adiponectin was not affected (P > 0.05) by fish-oil supplementation. Muscle location influenced (P < 0.01) abundance of leptin and adiponectin, with abundance being higher in the biceps femoris than in the longissimus lumborum. No other genes analyzed were impacted by muscle location (P > 0.05). Our findings suggest that supplementation of omega-3 fatty acids via fish-oil may affect the inflammatory response and skeletal muscle growth. Further research is needed to evaluate the impact of these results on animal production.


2008 ◽  
Vol 149 (14) ◽  
pp. 627-637 ◽  
Author(s):  
Zsuzsa Varga

Cardioprotective action of omega-3 polyunsaturated fatty acids such as eicosapentaenoic and docosahexaenoic acid in fish and α-linolenic acid in plants was demonstrated in primary and secondary clinical trials. Fish oil therapy causes a marked decrease in serum triacylglycerol and very low density lipoprotein levels and increases moderately high density lipoprotein levels without any adverse effects. Omega-3 fatty acids decrease slightly, but significantly blood pressure, enhance endothelial function, they have anti-aggregator, anti-thrombotic and anti-inflammatory effects as well. These beneficial effects are in connection with modification of gene transcription levels of some key molecules such as nuclear factor-κB and sterol element binding receptor protein-1c, which regulate for example expression of adhesion molecules or several receptors involved in triglyceride synthesis (hepatocyte X receptor, hepatocyte nuclear factor 4α, farnesol X receptor, and peroxisome proliferator-activated receptors). On the basis of these observations, the supplementation of the diet with omega-3 fatty acids (fish, fish oil, linseed, and linseed oil or canola oil) is advisable in primary and secondary prevention.


2020 ◽  
Vol Publish Ahead of Print ◽  
Author(s):  
Emily J. Ferguson ◽  
Joel W. Seigel ◽  
Chris McGlory

Marine Drugs ◽  
2019 ◽  
Vol 17 (6) ◽  
pp. 380 ◽  
Author(s):  
Shing-Hwa Liu ◽  
Chen-Yuan Chiu ◽  
Lou-Pin Wang ◽  
Meng-Tsan Chiang

Obesity is known to cause skeletal muscle wasting. This study investigated the effect and the possible mechanism of fish oil on skeletal muscle wasting in an obese rat model. High-fat (HF) diets were applied to induce the defects of lipid metabolism in male Sprague-Dawley rats with or without substitution of omega-3 fatty acids-enriched fish oil (FO, 5%) for eight weeks. Diets supplemented with 5% FO showed a significant decrease in the final body weight compared to HF diet-fed rats. The decreased soleus muscle weights in HF diet-fed rats could be improved by FO substitution. The decreased myosin heavy chain (a muscle thick filament protein) and increased FOXO3A and Atrogin-1 (muscle atrophy-related proteins) protein expressions in soleus muscles of HF diet-fed rats could also be reversed by FO substitution. FO substitution could also significantly activate adenosine monophosphate (AMP)-activated protein kinase (AMPK) phosphorylation, peroxisome-proliferator-activated receptor-γ (PPARγ) coactivator 1α (PGC-1α), and PPARγ protein expression and lipoprotein lipase (LPL) mRNA expression in soleus muscles of HF diet-fed rats. These results suggest that substitution of FO exerts a beneficial improvement in the imbalance of lipid and muscle metabolisms in obesity. AMPK/PGC-1α signaling may play an important role in FO-prevented obesity-induced muscle wasting.


Nutrients ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 835 ◽  
Author(s):  
Chacińska ◽  
Zabielski ◽  
Książek ◽  
Szałaj ◽  
Jarząbek ◽  
...  

It has been established that OMEGA-3 polyunsaturated fatty acids (PUFAs) may improve lipid and glucose homeostasis and prevent the “low-grade” state of inflammation in animals. Little is known about the effect of PUFAs on adipocytokines expression and biologically active lipids accumulation under the influence of high-fat diet-induced obesity. The aim of the study was to examine the effect of fish oil supplementation on adipocytokines expression and ceramide (Cer) and diacylglycerols (DAG) content in visceral and subcutaneous adipose tissue of high-fat fed animals. The experiments were carried out on Wistar rats divided into three groups: standard diet–control (SD), high-fat diet (HFD), and high-fat diet + fish oil (HFD+FO). The fasting plasma glucose and insulin concentrations were examined. Expression of carnitine palmitoyltransferase 1 (CPT1) protein was determined using the Western blot method. Plasma adipocytokines concentration was measured using ELISA kits and mRNA expression was determined by qRT-PCR reaction. Cer, DAG, and acyl-carnitine (A-CAR) content was analyzed by UHPLC/MS/MS. The fish oil supplementation significantly decreased plasma insulin concentration and Homeostatic Model Assesment for Insulin Resistance (HOMA-IR) index and reduced content of adipose tissue biologically active lipids in comparison with HFD-fed subjects. The expression of CPT1 protein in HFD+FO in both adipose tissues was elevated, whereas the content of A-CAR was lower in both HFD groups. There was an increase of adiponectin concentration and expression in HFD+FO as compared to HFD group. OMEGA-3 fatty acids supplementation improved insulin sensitivity and decreased content of Cer and DAG in both fat depots. Our results also demonstrate that PUFAs may prevent the development of insulin resistance in response to high-fat feeding and may regulate the expression and secretion of adipocytokines in this animal model.


Author(s):  
Hadeer Zakaria ◽  
Tarek M. Mostafa ◽  
Gamal A. El-Azab ◽  
Nagy AH Sayed-Ahmed

Abstract. Background: Elevated homocysteine levels and malnutrition are frequently detected in hemodialysis patients and are believed to exacerbate cardiovascular comorbidities. Omega-3 fatty acids have been postulated to lower homocysteine levels by up-regulating metabolic enzymes and improving substrate availability for homocysteine degradation. Additionally, it has been suggested that prevention of folate depletion by vitamin E consumption decreases homocysteine levels. However, data on the effect of omega-3 fatty acids and/or vitamin E on homocysteine levels and nutritional status have been inconclusive. Therefore, this study was planned to examine the effect of combined supplementation of fish oil, as a source of omega-3 fatty acids, with wheat germ oil, as a source of vitamin E, on homocysteine and nutritional indices in hemodialysis patients. Methods: This study was a randomized, double-blind, placebo-controlled trial. Forty-six hemodialysis patients were randomly assigned to two equally-sized groups; a supplemented group who received 3000 mg/day of fish oil [1053 mg omega-3 fatty acids] plus 300 mg/day of wheat germ oil [0.765 mg vitamin E], and a matched placebo group who received placebo capsules for 4 months. Serum homocysteine and different nutritional indices were measured before and after the intervention. Results: Twenty patients in each group completed the study. At the end of the study, there were no significant changes in homocysteine levels and in the nutritional indices neither in the supplemented nor in the placebo-control groups (p > 0.05). Conclusions: Fish oil and wheat germ oil combination did not produce significant effects on serum homocysteine levels and nutritional indices of hemodialysis patients.


Sign in / Sign up

Export Citation Format

Share Document