scholarly journals Transcriptional mechanisms that control expression of the macrophage colony-stimulating factor receptor locus

2017 ◽  
Vol 131 (16) ◽  
pp. 2161-2182 ◽  
Author(s):  
Rocio Rojo ◽  
Clare Pridans ◽  
David Langlais ◽  
David A. Hume

The proliferation, differentiation, and survival of cells of the macrophage lineage depends upon signals from the macrophage colony-stimulating factor (CSF) receptor (CSF1R). CSF1R is expressed by embryonic macrophages and induced early in adult hematopoiesis, upon commitment of multipotent progenitors to the myeloid lineage. Transcriptional activation of CSF1R requires interaction between members of the E26 transformation-specific family of transcription factors (Ets) (notably PU.1), C/EBP, RUNX, AP-1/ATF, interferon regulatory factor (IRF), STAT, KLF, REL, FUS/TLS (fused in sarcoma/ranslocated in liposarcoma) families, and conserved regulatory elements within the mouse and human CSF1R locus. One element, the Fms-intronic regulatory element (FIRE), within intron 2, is conserved functionally across all the amniotes. Lineage commitment in multipotent progenitors also requires down-regulation of specific transcription factors such as MYB, FLI1, basic leucine zipper transcriptional factor ATF-like (BATF3), GATA-1, and PAX5 that contribute to differentiation of alternative lineages and repress CSF1R transcription. Many of these transcription factors regulate each other, interact at the protein level, and are themselves downstream targets of CSF1R signaling. Control of CSF1R transcription involves feed–forward and feedback signaling in which CSF1R is both a target and a participant; and dysregulation of CSF1R expression and/or function is associated with numerous pathological conditions. In this review, we describe the regulatory network behind CSF1R expression during differentiation and development of cells of the mononuclear phagocyte system.

Blood ◽  
1994 ◽  
Vol 84 (8) ◽  
pp. 2523-2530 ◽  
Author(s):  
JK Fraser ◽  
S Tran ◽  
SD Nimer ◽  
JC Gasson

Abstract Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a hematopoietic growth factor that stimulates the proliferation, maturation, and functional activity of myeloid cells in peripheral blood and bone marrow. Expression of GM-CSF is tightly regulated and is limited to cells stimulated directly (T cells, macrophages) or indirectly (fibroblasts, endothelial cells) by immune challenge. Several studies of the transcriptional control of GM-CSF expression have elucidated a region of the GM-CSF promoter that mediates positive regulatory activity in a number of cell types. This region contains a direct repeat of the sequence CATTA/T that extends from nucleotides -37 to -48 upstream of the start of mRNA synthesis. Although specific DNA:protein interactions have been shown within this region, neither the nature nor the number of nuclear factors responsible for these interactions have been characterized. In this study, we use DNase I footprinting analysis to demonstrate that point mutations, which inactivate the GM-CSF promoter, disrupt DNA:protein interactions within this region. By combined electrophoretic mobility shift and ultraviolet cross-linking analysis, we have detected several protein species that bind specifically to the positive regulatory sequence.


1994 ◽  
Vol 14 (1) ◽  
pp. 373-381 ◽  
Author(s):  
D E Zhang ◽  
C J Hetherington ◽  
H M Chen ◽  
D G Tenen

The macrophage colony-stimulating factor (M-CSF) receptor is expressed in a tissue-specific fashion from two distinct promoters in monocytes/macrophages and the placenta. In order to further understand the transcription factors which play a role in the commitment of multipotential progenitors to the monocyte/macrophage lineage, we have initiated an investigation of the factors which activate the M-CSF receptor very early during the monocyte differentiation process. Here we demonstrate that the human monocytic M-CSF receptor promoter directs reporter gene activity in a tissue-specific fashion. Since one of the few transcription factors which have been implicated in the regulation of monocyte genes is the macrophage- and B-cell-specific PU.1 transcription factor, we investigated whether PU.1 binds and activates the M-CSF receptor promoter. Here we demonstrate that both in vitro-translated PU.1 and PU.1 from nuclear extracts bind to a specific site in the M-CSF receptor promoter just upstream from the major transcription initiation site. Mutations in this site which eliminate PU.1 binding decrease M-CSF receptor promoter activity significantly in macrophage cell lines only. Furthermore, PU.1 transactivates the M-CSF receptor promoter in nonmacrophage cells. These results suggest that PU.1 plays a major role in macrophage gene regulation and development by directing the expression of a receptor for a key macrophage growth factor.


Blood ◽  
2000 ◽  
Vol 95 (8) ◽  
pp. 2552-2558 ◽  
Author(s):  
Evelyn M. Kwon ◽  
Maribeth A. Raines ◽  
John Blenis ◽  
Kathleen M. Sakamoto

Abstract Granulocyte-macrophage colony-stimulating factor (GM-CSF) activates several kinases and transcription factors through interaction with a heterodimeric receptor complex. We previously demonstrated that phosphorylation of the cyclic adenosine monophosphate (cAMP) response element-binding protein, CREB, occurs through a protein kinase A-independent pathway and is required for GM-CSF–induced transcriptional activation of the immediate early gene, early growth response-1 (egr-1). Recent reports indicate that receptor tyrosine kinases can induce CREB phosphorylation through activation of pp90RSK. We performed immune complex kinase assays in the human myeloid leukemic cell line, TF-1, which revealed that GM-CSF induced pp90RSK activation and phosphorylation of CREB within 5 minutes of stimulation. Transfection with the kinase-defective pp90RSK expression plasmid demonstrated a statistically significant decrease in transcriptional activation of a −116 CAT/egr-1 promoter construct in response to GM-CSF. Furthermore, activation of pp90RSK, CREB and egr-1in GM-CSF–treated cells was inhibited by the presence of the inhibitor, PD98059. In this study, we report that GM-CSF induces CREB phosphorylation and egr-1 transcription by activating pp90RSK through an MEK-dependent signaling pathway.


Blood ◽  
1996 ◽  
Vol 87 (9) ◽  
pp. 3694-3703 ◽  
Author(s):  
SD Nimer ◽  
W Zhang ◽  
K Kwan ◽  
Y Whang ◽  
J Zhang ◽  
...  

Both copies of a repeated sequence CATT(A/T), located between bp -53 and -39 in the upstream region of the human GM-CSF gene, are required for mitogen-inducible promoter activity in T lymphocytes. However, the proteins that recognize this region of the granulocyte-macrophage colony-stimulating factor (GM-CSF) promoter, and are responsible for its transcriptional regulatory activity, have not been clearly identified. Using transient transfection assays, we demonstrate that a 19-bp oligonucleotide containing the CATT(A/T) repeats has strong constitutive enhancer activity in both T cell and non-T-cell lines, even though GM-CSF is not normally constitutively expressed by these cells. A 12-bp oligonucleotide, containing only the sequence CATTAATCATTT, lacks enhancer activity indicating that the nucleotides surrounding these sequences are critical for this enhancer activity. The sequence TTTCCT, which can bind members of the ets family of transcription factors, is located just 3′ of these CATT(A/T) repeats, and mutagenesis of the CCT sequence abolishes (1) the constitutive (and mitogen inducible) enhancer activity of the 19-bp GM-CSF sequences, (2) the responsiveness to transactivation by ets-1, and (3) the ability to specifically bind ets-1 and elf-1 in electrophoretic mobility shift assays (EMSA). We demonstrate that although T cells contain nuclear proteins capable of independently recognizing the ets binding site and the CATT(A/T) repeats in EMSAs, both of these regulatory elements are required for enhancer function. The strong constitutive activity of this 19-bp region suggests that negative regulation of the GM-CSF promoter is critical for the restricted expression pattern of GM-CSF mRNA.


1994 ◽  
Vol 14 (3) ◽  
pp. 2213-2221
Author(s):  
J K Fraser ◽  
J J Guerra ◽  
C Y Nguyen ◽  
J E Indes ◽  
J C Gasson ◽  
...  

Human granulocyte-macrophage colony-stimulating factor (GM-CSF) stimulates the proliferation and maturation of normal myeloid progenitor cells and can also stimulate the growth of acute myelogenous leukemia (AML) blasts. GM-CSF is not normally produced by resting cells but is expressed by a variety of activated cells including T lymphocytes, macrophages, and certain cytokine-stimulated fibroblasts and endothelial cells. Production of GM-CSF by cultured AML cells has been demonstrated, and GM-CSF expression by normal myeloid progenitors has been postulated to play a role in myelopoiesis. We have investigated the regulation of expression of GM-CSF in AML cell lines, and our results demonstrate the presence of a strong constitutive promoter element contained within 53 bp upstream of the cap site. We have also identified a negative regulatory element located immediately upstream of the positive regulatory element (within 69 bp of the cap site) that is active in AML cell lines but not T cells or K562 CML cells. Competition transfection and mobility shift studies demonstrate that this activity correlates with binding of a 45-kDa protein.


1993 ◽  
Vol 13 (5) ◽  
pp. 2787-2801
Author(s):  
H Nomiyama ◽  
K Hieshima ◽  
K Hirokawa ◽  
T Hattori ◽  
K Takatsuki ◽  
...  

Cytokine LD78 is a human counterpart of the mouse macrophage inflammatory protein 1 alpha/hematopoietic stem cell inhibitor. Promoters of the LD78 alpha and LD78 beta genes showed similar inducible activities in two leukemic cell lines, K562 and Jurkat, but the induction mechanisms differed between the two cell lines. Further characterization of the LD78 alpha promoter indicated that multiple positive and negative regulatory elements are present, some of which are differentially required for induction and repression of the promoter activity in different cells. One of the negative regulatory elements, ICK-1, functioned in both cell lines in the absence and presence of stimulation and was shown to be a recognition site for positive and negative transcriptional factors. This ICK-1 element contained a direct repeat, and similar repeats were also found in the negative regulatory elements of hematopoietic growth factor interleukin-3 (IL-3) and granulocyte-macrophage colony-stimulating factor (GM-CSF) gene promoters. Nuclear extracts from K562 and Jurkat cells formed several protein-DNA complexes with the LD78 alpha ICK-1 element, one of which was also observed with the IL-3 and GM-CSF ICK-1 elements. Results from in vivo and in vitro analyses suggested that the protein forming this complex functions as a negative factor. The binding affinity of this protein, ICK-1A, to the LD78 alpha ICK-1 element was low and was significantly affected by the incubation temperature and the salt concentration in the binding buffer. ICK-1B, another protein bound specifically by the LD78 alpha ICK-1 element, was shown to be a positive factor important for induction of the promoter. These results suggested that ICK-1A plays an important role in balanced expression of LD78, IL-3, and GM-CSF during hematopoietic cell growth and differentiation.


Blood ◽  
2000 ◽  
Vol 95 (8) ◽  
pp. 2552-2558 ◽  
Author(s):  
Evelyn M. Kwon ◽  
Maribeth A. Raines ◽  
John Blenis ◽  
Kathleen M. Sakamoto

Granulocyte-macrophage colony-stimulating factor (GM-CSF) activates several kinases and transcription factors through interaction with a heterodimeric receptor complex. We previously demonstrated that phosphorylation of the cyclic adenosine monophosphate (cAMP) response element-binding protein, CREB, occurs through a protein kinase A-independent pathway and is required for GM-CSF–induced transcriptional activation of the immediate early gene, early growth response-1 (egr-1). Recent reports indicate that receptor tyrosine kinases can induce CREB phosphorylation through activation of pp90RSK. We performed immune complex kinase assays in the human myeloid leukemic cell line, TF-1, which revealed that GM-CSF induced pp90RSK activation and phosphorylation of CREB within 5 minutes of stimulation. Transfection with the kinase-defective pp90RSK expression plasmid demonstrated a statistically significant decrease in transcriptional activation of a −116 CAT/egr-1 promoter construct in response to GM-CSF. Furthermore, activation of pp90RSK, CREB and egr-1in GM-CSF–treated cells was inhibited by the presence of the inhibitor, PD98059. In this study, we report that GM-CSF induces CREB phosphorylation and egr-1 transcription by activating pp90RSK through an MEK-dependent signaling pathway.


1996 ◽  
Vol 16 (3) ◽  
pp. 1231-1240 ◽  
Author(s):  
D E Zhang ◽  
C J Hetherington ◽  
S Meyers ◽  
K L Rhoades ◽  
C J Larson ◽  
...  

Transcription factors play a key role in the development and differentiation of specific lineages from multipotential progenitors. Identification of these regulators and determining the mechanism of how they activate their target genes are important for understanding normal development of monocytes and macrophages and the pathogenesis of a common form of adult acute leukemia, in which the differentiation of monocytic cells is blocked. Our previous work has shown that the monocyte-specific expression of the macrophage colony-stimulating factor (M-CSF) receptor is regulated by three transcription factors interacting with critical regions of the M-CSF receptor promoter, including PU.1 and AML1.PU.1 is essential for myeloid cell development, while the AML1 gene is involved in several common leukemia-related chromosome translocations, although its role in hematopoiesis has not been fully identified. Along with AML1, a third factor, Mono A, interacts with a small region of the promoter which can function as a monocyte-specific enhancer when multimerized and linked to a heterologous basal promoter. Here, we demonstrate by electrophoretic mobility shift assays with monocytic nuclear extracts, COS-7 cell-transfected factors, and specific antibodies that the monocyte-enriched factor Mono A is CCAAT enhancer-binding protein (C/EBP). C/EBP has been shown previously to be an important transcription factor involved in hepatocyte and adipocyte differentiation; in hematopoietic cells, C/EBP is specifically expressed in myeloid cells. In vitro binding analysis reveals a physical interaction between C/EBP and AML1. Further transfection studies show that C/EBP and AML1 in concert with the AML1 heterodimer partner CBF beta synergistically activate M-CSF receptor by more then 60 fold. These results demonstrate that C/EBP and AML1 are important factors for regulating a critical hematopoietic growth factor receptor, the M-CSF receptor, suggesting a mechanism of how the AML1 fusion protein could contribute to acute myeloid leukemia. Furthermore, they demonstrate physical and functional interactions between AML1 and C/EBP transcription factor family members.


Sign in / Sign up

Export Citation Format

Share Document