DLC-1 down-regulation via exosomal miR-106b-3p exchange promotes CRC metastasis by the epithelial-to-mesenchymal transition

2020 ◽  
Vol 134 (8) ◽  
pp. 955-959 ◽  
Author(s):  
Francesco Mannavola ◽  
Gaetano Pezzicoli ◽  
Marco Tucci

Abstract Exosomes (Exo) have emerged as potent amplifiers of pro-tumorigenic signals to distant cells. The knowledge of their role in colorectal cancer (CRC) is continuously up-growing, although their contribution to metastasis remains largely unclear. Liu et al. (Clinical Science (2020) 134, https://doi.org/10.1042/CS20191087) in their work have described a novel mechanism by which CRC-derived Exo promote metastasis through the down-regulation of the deleted in liver cancer-1 (DLC-1), a gene involved in the epithelial-to-mesenchymal transition (EMT) event in cancer cells. The Authors also demonstrated an increase in serum exosomal miR-106b-3p in patients with metastatic CRC, suggesting its potential implication as a prognostic biomarker. These findings may be of great effort in clarifying the underlying mechanisms of CRC metastasis and provide new targets for future researches.

2021 ◽  
Vol 27 (1) ◽  
Author(s):  
Susanne Soelch ◽  
Nathalie Beaufort ◽  
Daniela Loessner ◽  
Matthias Kotzsch ◽  
Ute Reuning ◽  
...  

Abstract Background The small GTP-binding protein Rab31 plays an important role in the modulation of tumor biological-relevant processes, including cell proliferation, adhesion, and invasion. As an underlying mechanism, Rab31 is presumed to act as a molecular switch between a more proliferative and an invasive phenotype. This prompted us to analyze whether Rab31 overexpression in breast cancer cells affects expression of genes involved in epithelial-to-mesenchymal transition (EMT)-like processes when compared to Rab31 low-expressing cells. Methods Commercially available profiler PCR arrays were applied to search for differentially expressed genes in Rab31 high- and low-expressing CAMA-1 breast cancer cells. Differential expression of selected candidate genes in response to Rab31 overexpression in CAMA-1 cells was validated by independent qPCR and protein assays. Results Gene expression profiling of key genes involved in EMT, or its reciprocal process MET, identified 9 genes being significantly up- or down-regulated in Rab31 overexpressing CAMA-1 cells, with the strongest effects seen for TGFB1, encoding TGF-ß1 (> 25-fold down-regulation in Rab31 overexpressing cells). Subsequent validation analyses by qPCR revealed a strong down-regulation of TGFB1 mRNA levels in response to increased Rab31 expression not only in CAMA-1 cells, but also in another breast cancer cell line, MDA-MB-231. Using ELISA and Western blot analysis, a considerable reduction of both intracellular and secreted TGF-ß1 antigen levels was determined in Rab31 overexpressing cells compared to vector control cells. Furthermore, reduced TGF-ß activity was observed upon Rab31 overexpression in CAMA-1 cells using a sensitive TGF-ß bioassay. Finally, the relationship between Rab31 expression and the TGF-ß axis was analyzed by another profiler PCR array focusing on genes involved in TGF-ß signaling. We found 12 out of 84 mRNAs significantly reduced and 7 mRNAs significantly increased upon Rab31 overexpression. Conclusions Our results demonstrate that Rab31 is a potent modulator of the expression of TGF-ß and other components of the TGF-ß signaling pathway in breast cancer cells.


Sign in / Sign up

Export Citation Format

Share Document