scholarly journals NELL2 Modulates Cell Proliferation and Apoptosis via ERK Pathway in the Development of Benign Prostatic Hyperplasia

2021 ◽  
Author(s):  
Jianmin Liu ◽  
Daoquan Liu ◽  
Xueneng Zhang ◽  
Yan Li ◽  
Xun Fu ◽  
...  

Benign prostatic hyperplasia (BPH) is a quite common illness but its etiology and mechanism remain unclear. Neural epidermal growth factor-like like 2 (NELL2) plays multifunctional roles in neural cell growth and is strongly linked to the urinary tract disease. Current study aims to determine the expression, functional activities and underlying mechanism of NELL2 in BPH. Human prostate cell lines and tissues from normal human and BPH patients were utilized. Immunohistochemical staining, immunofluorescent staining, RT-PCR and Western-blotting were performed. We further generated cell models with NELL2 silenced or overexpressed. Subsequently, proliferation, cycle, and apoptosis of prostate cells were determined by CCK-8 assay and flow cytometry analysis. The epithelial-mesenchymal transition (EMT) and fibrosis process were also analyzed. Our study revealed that NELL2 was upregulated in BPH samples and localized in the stroma and the epithelium compartments of human prostate tissues. NELL2 deficiency induced a mitochondrial-dependent cell apoptosis, and inhibited cell proliferation via phosphorylating ERK1/2 activation. Additionally, suppression of ERK1/2 with U0126 incubation could significantly reverse NELL2 deficiency triggered cell apoptosis. Consistently, overexpression of NELL2 promoted cell proliferation and inhibited cell apoptosis. However, NELL2 interference was observed no effect on EMT and fibrosis process. Our novel data demonstrated that upregulation of NELL2 in the enlarged prostate could contribute to the development of BPH through enhancing cell proliferation and inhibited a mitochondrial-dependent cell apoptosis via the ERK pathway. The NELL2-ERK system might represent an important target to facilitate the development of future therapeutic approaches in BPH.

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Yanbo Chen ◽  
Hui Xu ◽  
Chong Liu ◽  
Meng Gu ◽  
Qi Chen ◽  
...  

The pathogenesis of benign prostatic hyperplasia (BPH) is extremely complicated which involving the multiple signaling pathways. The deficiency of vitamin D is an important risk factor for BPH, and exogenous vitamin D is effective for the treatment of BPH. In this study, we provided in vitro mechanical evidence of vitamin D as a treatment for BPH using BPH-1, WPMY-1, and PBMC cells. We found that 25-hydroxyvitamin D (25-OH D) level is decreased in BPH and closely correlated with age, prostate volume, maximum flow, international prostate symptom score, and prostate-specific antigen of the BPH patients. We further revealed that 25-OH D ameliorated TGF-β1 induces epithelial-mesenchymal transition (EMT) of BPH-1 cells and proliferation of WPMY-1 cells via blocking TGF-β signaling. Moreover, 25-OH D was able to block NF-κB signaling in PBMCs of BPH patients and STAT3 signaling in BPH cells to relieve inflammation. 25-OH D also protects BPH cells from inflammatory cytokines selected by PBMCs. Finally, we uncovered that 25-OH D alleviated prostate cell oxidative stress by triggering Nrf2 signaling. In conclusion, our data verified that 25-OH D regulated multiple singling pathways to restrain prostate cell EMT, proliferation, inflammation, and oxidative stress. Our study provides in vitro mechanical evidence to support clinical use of vitamin D as a treatment for BPH.


2012 ◽  
Vol 18 (11) ◽  
pp. 824-830 ◽  
Author(s):  
Zhen-feng Hong ◽  
Jiu-mao Lin ◽  
Xiao-yong Zhong ◽  
Ying Li ◽  
Jian-heng Zhou ◽  
...  

Nutrients ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 884
Author(s):  
Kwang Hoon Song ◽  
Chang-Seob Seo ◽  
Won-Kyung Yang ◽  
Hyun-O Gu ◽  
Ki-Joong Kim ◽  
...  

Benign prostatic hyperplasia (BPH) is the most common symptomatic abnormality of the human prostate characterized by uncontrolled proliferation of the prostate gland. In this study, we investigated the effect of bamboo, Phyllostachys pubescens, leaves extract (PPE) on human 5α-reductase type 2 (SRD5A2) gene promoter activity in human prostate cell lines and the protective effect of PPE on a testosterone-induced BPH rat model. PPE repressed human SRD5A2 promoter activity and its mRNA expression. The rats treated with PPE for 4 weeks showed a significantly attenuated prostate weight compared to vehicle control. PPE-treated rats also showed reduced serum dihydrotestosterone, testosterone, prostate-specific antigen, and SRD5A2 levels by testosterone injection. Quantitative real-time polymerase chain reaction showed that PPE treatment significantly decreased mRNA expression of SRD5A2, androgen receptor (AR), proliferating cell nuclear antigen (PCNA), and fibroblast growth factor 2 compared with the vehicle-treated, testosterone-injected rats in the prostate. Furthermore, PPE treatment showed reduced AR, PCNA, and tumor necrosis factor alpha expression in the prostate via immunohistofluorescence staining. In conclusion, oral administration of PPE prevented and inhibited the development and progression of enlarged prostate lesions in testosterone-induced animal models through various anti-proliferative and anti-inflammatory pharmacological effects and induced suppression of SRD5A2 gene expression.


2017 ◽  
Vol 40 (12) ◽  
pp. 2125-2133 ◽  
Author(s):  
Charith UB Wijerathne ◽  
Hee-Seon Park ◽  
Hye-Yun Jeong ◽  
Ji-Won Song ◽  
Og-Sung Moon ◽  
...  

2001 ◽  
Vol 195 (5) ◽  
pp. 571-579 ◽  
Author(s):  
Labrini Nassis ◽  
Albert G. Frauman ◽  
Mitsuru Ohishi ◽  
Jialong Zhuo ◽  
David J. Casley ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document