Mismatch Negativity in the Assessment of Central Auditory Function

1994 ◽  
Vol 3 (2) ◽  
pp. 39-51 ◽  
Author(s):  
Nina Kraus ◽  
Therese J. McGee

The mismatch negativity (MMN) is an auditory evoked potential that is undergoing research both on its basic characteristics and its potential clinical applications. Current work indicates that the MMN is a passively elicited measure of the brain's response to stimulus change and is therefore a measure of auditory discrimination. If the MMN can be evoked by acoustic stimulus differences that are important in everyday communication, it may serve as a tool for evaluating central auditory processing in individuals whose hearing sensitivity is normal but whose history and behavior indicate difficulties in auditory perception.In this Short Course, we provide an overview of the MMN, how it is recorded and current thinking on what it reflects. We describe its characteristics in normal school-age children, particularly in response to speech stimuli. We also describe our early experience with populations for whom the assessment of central auditory processing is important for clinical management.

2021 ◽  
Vol 64 (10) ◽  
pp. 4014-4029
Author(s):  
Kathy R. Vander Werff ◽  
Christopher E. Niemczak ◽  
Kenneth Morse

Purpose Background noise has been categorized as energetic masking due to spectrotemporal overlap of the target and masker on the auditory periphery or informational masking due to cognitive-level interference from relevant content such as speech. The effects of masking on cortical and sensory auditory processing can be objectively studied with the cortical auditory evoked potential (CAEP). However, whether effects on neural response morphology are due to energetic spectrotemporal differences or informational content is not fully understood. The current multi-experiment series was designed to assess the effects of speech versus nonspeech maskers on the neural encoding of speech information in the central auditory system, specifically in terms of the effects of speech babble noise maskers varying by talker number. Method CAEPs were recorded from normal-hearing young adults in response to speech syllables in the presence of energetic maskers (white or speech-shaped noise) and varying amounts of informational maskers (speech babble maskers). The primary manipulation of informational masking was the number of talkers in speech babble, and results on CAEPs were compared to those of nonspeech maskers with different temporal and spectral characteristics. Results Even when nonspeech noise maskers were spectrally shaped and temporally modulated to speech babble maskers, notable changes in the typical morphology of the CAEP in response to speech stimuli were identified in the presence of primarily energetic maskers and speech babble maskers with varying numbers of talkers. Conclusions While differences in CAEP outcomes did not reach significance by number of talkers, neural components were significantly affected by speech babble maskers compared to nonspeech maskers. These results suggest an informational masking influence on neural encoding of speech information at the sensory cortical level of auditory processing, even without active participation on the part of the listener.


Author(s):  
Ana Cláudia Mondini Ribeiro Bez ◽  
Cyntia Barbosa Laureano Luiz ◽  
Sabrina Mazzer Paes ◽  
Renata Rangel Azevedo ◽  
Daniela Gil

Abstract Introduction Dysphonia is an oral communication disorder. The voice and hearing are interrelated aspects. Hearing is an important sensory input for monitoring the vocal pattern. The relation between hearing abilities and dysphonia represents a contribution both in scientific and in clinical terms, especially in cases in which satisfactory results are not achieved in the therapeutic process. Objective To characterize long-latency auditory evoked potential (P300) with tonal and complex stimuli, and to make a behavioral evaluation of auditory processing in adults with behavioral dysphonia. Method The sample used for the present study consisted of 20 subjects from both genders with ages ranging from 18 and 58, who were diagnosed with behavioral dysphonia. The evaluations occurred in a single 2-hour session, in which the procedures of clinical history, pure tone and speech audiometries, acoustic immittance measures, and behavioral and electrophysiological evaluations of auditory processing were performed. Results The descriptive measures of P3 latency elicited by tonal and complex stimuli showed similar results for the right and left ears, without statistically significant differences. In the qualitative analysis, the results observed were within the normality patterns for the P3 component for both tonal and complex stimuli. As for the behavioral evaluation of auditory processing, abnormal results were observed in 100% of the sample. Abnormalities were found in the auditory skills of ordering and temporal resolution and figure-background obtained from the duration pattern, random gap detection, and dichotic tests (syllables and words), respectively. Conclusion The evaluated patients presented central auditory processing disorder, evidenced by behavioral assessment.


2019 ◽  
Vol 30 (06) ◽  
pp. 493-501
Author(s):  
Skylar Trott ◽  
Trey Cline ◽  
Jeffrey Weihing ◽  
Deidra Beshear ◽  
Matthew Bush ◽  
...  

AbstractEstrogen has been identified as playing a key role in many organ systems. Recently, estrogen has been found to be produced in the human brain and is believed contribute to central auditory processing. After menopause, a low estrogen state, many women report hearing loss but demonstrate no deficits in peripheral hearing sensitivity, which support the notion that estrogen plays an effect on central auditory processing. Although animal research on estrogen and hearing loss is extensive, there is little in the literature on the human model.The aim of this study was to evaluate relationships between hormonal changes and hearing as it relates to higher auditory function in pre- and postmenopausal (Post-M) females.A prospective, group comparison study.Twenty eight women between the ages of 18 and 70 at the University of Kentucky were recruited.Participants were separated into premenopausal and peri-/Post-M groups. Participants had normal peripheral hearing sensitivity and underwent a behavioral auditory processing battery and electrophysiological evaluation. An analysis of variance was performed to address the aims of the study.Results from the study demonstrated statistically significant difference between groups, where Post-M females had difficulties in spatial hearing abilities as reflected on the Listening in Spatialized Noise Test–Sentences test. In addition, measures on the auditory brainstem response and the middle latency response reflected statistically significant differences between groups with Post-M females having longer latencies.Results from the present study demonstrated significant differences between groups, particularly listening in noise. Females who present with auditory complaints in spite of normal hearing thresholds should have a more extensive audiological evaluation to further evaluate possible central deficits.


2012 ◽  
Vol 123 (3) ◽  
pp. 424-458 ◽  
Author(s):  
R. Näätänen ◽  
T. Kujala ◽  
C. Escera ◽  
T. Baldeweg ◽  
K. Kreegipuu ◽  
...  

2019 ◽  
Vol 24 (02) ◽  
pp. e154-e159
Author(s):  
Mirtes Brückmann ◽  
Michele Vargas Garcia

Abstract Introduction Mismatch negativity (MMN) is a long latency auditory evoked potential, represented by a negative wave, generated after the potential N1 and visualized in a resulting wave. Objective To identify the time of occurrence of MMN after N1, elicited with verbal and nonverbal stimuli. Methods Ninety individuals aged between 18 and 56 years old participated in the study, 39 of whom were male and 51 female, with normal auditory thresholds, at least 8 years of schooling, and who did not present auditory processing complaints. All of them underwent audiologic anamnesis, visual inspection of external auditory meatus, pure tone audiometry, speech audiometry, acoustic immittance measures and the dichotic sentence identification test as a screening for alterations in auditory processing, a requirement to participate in the sample. The MMN was applied with two different stimuli, with these being da/ta (verbal) and 750 Hz and 1,000 Hz (nonverbal). Results There was a statistically significant difference between the latency values of the N1 potential and the MMN with the two stimuli, as well as between the MMN with verbal and nonverbal stimuli, and the latency of the MMN elicited with da/ta being greater than that elicited with 750 Hz and 1,000 Hz, which facilitated its visualization. Conclusion The time of occurrence of MMN after the N1 elicited with verbal stimuli was 100.4 ms and with nonverbal stimuli 85.5 ms. Thus, the marking of the MMN with verbal stimuli proved to be more distant from N1 compared with the nonverbal stimuli.


2015 ◽  
Vol 21 (1) ◽  
pp. 1-11 ◽  
Author(s):  
Junming Chen ◽  
Suijun Chen ◽  
Yiqing Zheng ◽  
Yongkang Ou

Mismatch negativity (MMN) has been widely used to study the function of central auditory processing in the elderly. However, current research has not yet considered the effect of noise and high-frequency hearing threshold on MMN in the elderly. The aim of this study was to evaluate the effect of aging and high-frequency hearing loss on speech-related MMN in noisy backgrounds. Additionally, the possible mechanisms of central auditory processing dysfunction in the elderly were investigated. Fifty people aged 61-80 (70 ± 5.8) years were recruited for this study. They were divided into a 61- to 70-year-old group and a 71- to 80-year-old group. Fifty younger adults aged 21-40 (31 ± 5.3) years were recruited as healthy controls. Pure-tone hearing thresholds were recorded. A speech discrimination score (SDS) and a speech-evoked MMN under white noise with a bandwidth from 125 to 8,000 Hz background condition were recorded. The relationships between SDS and MMN latency and amplitude were analyzed. The effects of age and binaural 2,000-, 4,000- and 8,000-Hz pure-tone hearing thresholds on MMN latency and amplitude were analyzed. We found that the hearing thresholds of 2,000, 4,000 and 8,000 Hz in the 61- to 70-year-old and 71- to 80-year-old groups were higher than those in the control group. The SDS in a noisy background in the 61- to 70-year-old and 71- to 80-year-old groups were lower than those in the control group. Speech-evoked MMN latency was longer in the 61- to 70-year-old and in the 71- to 80-year-old groups than in the control group (215.8 ± 14.2 ms). SDS and speech-evoked MMN latency were negatively correlated. Age and speech-evoked MMN latency were positively correlated, as were the binaural 4,000- to 8,000-Hz pure-tone hearing thresholds and speech-evoked MMN. This study suggests that in elderly subjects, the function of preattentive central auditory processing changes. Additionally, increasing age and high-frequency hearing thresholds create a synergy in neurons that is weakened in the MMN time window, which may be a cause of central auditory processing disorders in elderly subjects in noisy background conditions.


2007 ◽  
Vol 118 (12) ◽  
pp. 2544-2590 ◽  
Author(s):  
R. Näätänen ◽  
P. Paavilainen ◽  
T. Rinne ◽  
K. Alho

2017 ◽  
Vol 28 (05) ◽  
pp. 463-471 ◽  
Author(s):  
Vasiliki Vivian Iliadou ◽  
Doris-Eva Bamiou ◽  
Christos Sidiras ◽  
Nikolaos P. Moschopoulos ◽  
Magda Tsolaki ◽  
...  

Background: The known link between auditory perception and cognition is often overlooked when testing for cognition. Purpose: To evaluate auditory perception in a group of older adults diagnosed with mild cognitive impairment (MCI). Research Design: A cross-sectional study of auditory perception. Study Sample: Adults with MCI and adults with no documented cognitive issues and matched hearing sensitivity and age. Data collection: Auditory perception was evaluated in both groups, assessing for hearing sensitivity, speech in babble (SinB), and temporal resolution. Results: Mann–Whitney test revealed significantly poorer scores for SinB and temporal resolution abilities of MCIs versus normal controls for both ears. The right-ear gap detection thresholds on the Gaps-In-Noise (GIN) Test clearly differentiated between the two groups (p < 0.001), with no overlap of values. The left ear results also differentiated the two groups (p < 0.01); however, there was a small degree of overlap #x02DC;8-msec threshold values. With the exception of the left-ear inattentiveness index, which showed a similar distribution between groups, both impulsivity and inattentiveness indexes were higher for the MCIs compared to the control group. Conclusions: The results support central auditory processing evaluation in the elderly population as a promising tool to achieve earlier diagnosis of dementia, while identifying central auditory processing deficits that can contribute to communication deficits in the MCI patient population. A measure of temporal resolution (GIN) may offer an early, albeit indirect, measure reflecting left temporal cortical thinning associated with the transition between MCI and Alzheimer’s disease.


Sign in / Sign up

Export Citation Format

Share Document