scholarly journals The Effect of Dynamic Pitch on Speech Recognition in Temporally Modulated Noise

2017 ◽  
Vol 60 (9) ◽  
pp. 2725-2739 ◽  
Author(s):  
Jing Shen ◽  
Pamela E. Souza

PurposeThis study investigated the effect of dynamic pitch in target speech on older and younger listeners' speech recognition in temporally modulated noise. First, we examined whether the benefit from dynamic-pitch cues depends on the temporal modulation of noise. Second, we tested whether older listeners can benefit from dynamic-pitch cues for speech recognition in noise. Last, we explored the individual factors that predict the amount of dynamic-pitch benefit for speech recognition in noise.MethodYounger listeners with normal hearing and older listeners with varying levels of hearing sensitivity participated in the study, in which speech reception thresholds were measured with sentences in nonspeech noise.ResultsThe younger listeners benefited more from dynamic pitch for speech recognition in temporally modulated noise than unmodulated noise. Older listeners were able to benefit from the dynamic-pitch cues but received less benefit from noise modulation than the younger listeners. For those older listeners with hearing loss, the amount of hearing loss strongly predicted the dynamic-pitch benefit for speech recognition in noise.ConclusionsDynamic-pitch cues aid speech recognition in noise, particularly when noise has temporal modulation. Hearing loss negatively affects the dynamic-pitch benefit to older listeners with significant hearing loss.

2017 ◽  
Vol 26 (3S) ◽  
pp. 462-466 ◽  
Author(s):  
Jing Shen ◽  
Pamela E. Souza

Purpose Dynamic pitch, the variation in the fundamental frequency of speech, aids older listeners' speech perception in noise. It is unclear, however, whether some older listeners with hearing loss benefit from strengthened dynamic pitch cues for recognizing speech in certain noise scenarios and how this relative benefit may be associated with individual factors. We first examined older individuals' relative benefit between natural and strong dynamic pitches for better speech recognition in noise. Further, we reported the individual factors of the 2 groups of listeners who benefit differently from natural and strong dynamic pitches. Method Speech reception thresholds of 13 older listeners with mild–moderate hearing loss were measured using target speech with 3 levels of dynamic pitch strength. Individuals' ability to benefit from dynamic pitch was defined as the speech reception threshold difference between speeches with and without dynamic pitch cues. Results The relative benefit of natural versus strong dynamic pitch varied across individuals. However, this relative benefit remained consistent for the same individuals across those background noises with temporal modulation. Those listeners who benefited more from strong dynamic pitch reported better subjective speech perception abilities. Conclusion Strong dynamic pitch may be more beneficial than natural dynamic pitch for some older listeners to recognize speech better in noise, particularly when the noise has temporal modulation.


2014 ◽  
Vol 25 (06) ◽  
pp. 529-540 ◽  
Author(s):  
Erin C. Schafer ◽  
Danielle Bryant ◽  
Katie Sanders ◽  
Nicole Baldus ◽  
Katherine Algier ◽  
...  

Background: Several recent investigations support the use of frequency modulation (FM) systems in children with normal hearing and auditory processing or listening disorders such as those diagnosed with auditory processing disorders, autism spectrum disorders, attention-deficit hyperactivity disorder, Friedreich ataxia, and dyslexia. The American Academy of Audiology (AAA) published suggested procedures, but these guidelines do not cite research evidence to support the validity of the recommended procedures for fitting and verifying nonoccluding open-ear FM systems on children with normal hearing. Documenting the validity of these fitting procedures is critical to maximize the potential FM-system benefit in the abovementioned populations of children with normal hearing and those with auditory-listening problems. Purpose: The primary goal of this investigation was to determine the validity of the AAA real-ear approach to fitting FM systems on children with normal hearing. The secondary goal of this study was to examine speech-recognition performance in noise and loudness ratings without and with FM systems in children with normal hearing sensitivity. Research Design: A two-group, cross-sectional design was used in the present study. Study Sample: Twenty-six typically functioning children, ages 5–12 yr, with normal hearing sensitivity participated in the study. Intervention: Participants used a nonoccluding open-ear FM receiver during laboratory-based testing. Data Collection and Analysis: Participants completed three laboratory tests: (1) real-ear measures, (2) speech recognition performance in noise, and (3) loudness ratings. Four real-ear measures were conducted to (1) verify that measured output met prescribed-gain targets across the 1000–4000 Hz frequency range for speech stimuli, (2) confirm that the FM-receiver volume did not exceed predicted uncomfortable loudness levels, and (3 and 4) measure changes to the real-ear unaided response when placing the FM receiver in the child’s ear. After completion of the fitting, speech recognition in noise at a –5 signal-to-noise ratio and loudness ratings at a +5 signal-to-noise ratio were measured in four conditions: (1) no FM system, (2) FM receiver on the right ear, (3) FM receiver on the left ear, and (4) bilateral FM system. Results: The results of this study suggested that the slightly modified AAA real-ear measurement procedures resulted in a valid fitting of one FM system on children with normal hearing. On average, prescriptive targets were met for 1000, 2000, 3000, and 4000 Hz within 3 dB, and maximum output of the FM system never exceeded and was significantly lower than predicted uncomfortable loudness levels for the children. There was a minimal change in the real-ear unaided response when the open-ear FM receiver was placed into the ear. Use of the FM system on one or both ears resulted in significantly better speech recognition in noise relative to a no-FM condition, and the unilateral and bilateral FM receivers resulted in a comfortably loud signal when listening in background noise. Conclusions: Real-ear measures are critical for obtaining an appropriate fit of an FM system on children with normal hearing.


2005 ◽  
Vol 16 (09) ◽  
pp. 726-739 ◽  
Author(s):  
Rachel A. McArdle ◽  
Richard H. Wilson ◽  
Christopher A. Burks

The purpose of this mixed model design was to examine recognition performance differences when measuring speech recognition in multitalker babble on listeners with normal hearing (n = 36) and listeners with hearing loss (n = 72) utilizing stimulus of varying linguistic complexity (digits, words, and sentence materials). All listeners were administered two trials of two lists of each material in a descending speech-to-babble ratio. For each of the materials, recognition performances by the listeners with normal hearing were significantly better than the performances by the listeners with hearing loss. The mean separation between groups at the 50% point in signal-to-babble ratio on each of the three materials was ~8 dB. The 50% points for digits were obtained at a significantly lower signal-to-babble ratio than for sentences or words that were equivalent. There were no interlist differences between the two lists for the digits and words, but there was a significant disparity between QuickSIN™ lists for the listeners with hearing loss. A two-item questionnaire was used to obtain a subjective measurement of speech recognition, which showed moderate correlations with objective measures of speech recognition in noise using digits (r = .641), sentences (r = .572), and words (r = .673).


F1000Research ◽  
2021 ◽  
Vol 10 ◽  
pp. 311
Author(s):  
Marc René Schädler

Background: The effect of hearing impairment on speech perception was described by Plomp (1978) as a sum of a loss of class A, due to signal attenuation, and a loss of class D, due to signal distortion. While a loss of class A can be compensated by linear amplification, a loss of class D, which severely limits the benefit of hearing aids in noisy listening conditions, cannot. The hearing loss of class D is assumed to be the main reason why not few users of hearing aids keep complaining about the limited benefit of their devices in noisy environments. Working compensation strategies against it are unknown. Methods: Recently, in an approach to model human speech recognition by means of a re-purposed automatic speech recognition (ASR) system, the loss of class D was explained by introducing a level uncertainty which reduces the individual accuracy of spectro-temporal signal levels. Based on this finding, an implementation of a patented dynamic range manipulation scheme (PLATT) is proposed which aims to mitigate the effect of increased level uncertainty on speech recognition in noise by expanding spectral modulation patterns in the range of 2 to 4 ERB. This compensation approach is objectively evaluated regarding the benefit in speech recognition thresholds in noise using the ASR-based speech recognition model. Recommendations for an evaluation with human listeners are derived. Results: The objective evaluation suggests that approximately half of the class D loss due to an increased level uncertainty might be compensable. To measure the effect with human listeners, an experiment needs to be carefully designed to prevent the confusion class A and D loss compensations. Conclusions: A working compensation strategy for the class D loss could provide previously unexploited potential for relief. Evidence has to be provided in experiments with human listeners.


2021 ◽  
Vol 4 (2) ◽  
pp. 45-50
Author(s):  
Ecem KARTAL ÖZCAN ◽  
Merve ÖZBAL BATUK ◽  
Şule KAYA ◽  
Gonca SENNAROĞLU

Assessment of speech perception in noise in children with hearing aids: Preliminary results* Objective: Noisy environments are a part of the daily life of children, just like adults. Children with hearing loss who wear hearing aids are more susceptible to the negative effects of noise than their normal-hearing peers. This study aims to evaluate the speech recognition in noise performance of hearing aid users and compare them with their normal-hearing peers. Material and Method: Five children aged 6-12 years with bilateral moderate to severe symmetrical sensorineural hearing loss and using bilateral behind-the-ear hearing aids were included in the study. 4 different conditions of the Turkish HINT-C were applied, and a speech recognition threshold (SRT) is determined for each condition. Results: Regardless of their age, the SRT needed by children with hearing aids to achieve equal performance with their normal-hearing peers was found to be higher for all test conditions. As seen in children with normal hearing in general, the mean noise front score of the children with hearing loss was higher than the mean noise right and noise left scores. Conclusion: The results of this study revealed that children with bilaterally symmetrical moderate to severe hearing loss achieved poor speech recognition scores in environments similar to the classroom environment, compared to their normal-hearing peers. Our results guided appropriate rehabilitation and follow-up. Keywords: noise, speech recognition in noise, hearing loss, hearing aid, pediatric audiology, HINT, HINT-C


1979 ◽  
Vol 44 (2) ◽  
pp. 236-246 ◽  
Author(s):  
Paul G. Lacroix ◽  
J. Donald Harris

Forty-five subjects with sharply sloping sensorineural high-frequency hearing losses were examined for comprehension with a tape containing sentences that had been time-compressed (250 words/min), interrupted, (50 msec on-50 msec off), and masked with speech-spectrum noise (+ 2 dB S/N) in that order. All subjects yielded normal speech reception thresholds, and generally normal scores on the Northwestern University Auditory Test No. 6. Distorted-speech testing was completed at 40 dB SL. Subjects with losses at 2 kHz and above were able to comprehend only 50, 65, and 68% of compressed, interrupted, and noise-masked sentences, respectively. In contrast, subjects with losses at 3 kHz and above performed poorer than normal controls by 11.3, 12.5, and 8 percentage points respectively, while subjects within normal hearing sensitivity at 3 kHz performed as well as controls (maximum drop of 4.6 points with noise-masking). The multiplicative hypothesis was upheld in that the performance of subjects with severe high-frequency deficiencies was much poorer than one would predict on the basis of what is known about performance on these tests with either filtering alone or other distortions alone. These subjects, most especially those with severe frequency deficiencies, outperformed by up to 29 percentage points the mean scores of groups of normals given the same test items and distortion conditions, but listening through filtering that simulated the hearing loss of subjects in this study. It was suggested that hypacusics with high-frequency hearing losses can learn to use residual cues efficiently and that it is not altogether permissible to model sensorineural high-frequencv losses with normal-hearing subjects using frequency filtering.


2008 ◽  
Vol 19 (07) ◽  
pp. 548-556 ◽  
Author(s):  
Richard H. Wilson ◽  
Wendy B. Cates

Background: The Speech Recognition in Noise Test (SPRINT) is a word-recognition instrument that presents the 200 Northwestern University Auditory Test No. 6 (NU-6) words binaurally at 50 dB HL in a multitalker babble at a 9 dB signal-to-noise ratio (S/N) (Cord et al, 1992). The SPRINT was developed by and used by the Army as a more valid predictor of communication abilities (than pure-tone thresholds or word-recognition in quiet) for issues involving fitness for duty from a hearing perspective of Army personnel. The Words-in-Noise test (WIN) is a slightly different word-recognition task in a fixed level multitalker babble with 10 NU-6 words presented at each of 7 S/N from 24 to 0 dB S/N in 4 dB decrements (Wilson, 2003; Wilson and McArdle, 2007). For the two instruments, both the babble and the speakers of the words are different. The SPRINT uses all 200 NU-6 words, whereas the WIN uses a maximum of 70 words. Purpose: The purpose was to compare recognition performances by 24 young listeners with normal hearing and 48 older listeners with sensorineural hearing on the SPRINT and WIN protocols. Research Design: A quasi-experimental, mixed model design was used. Study Sample: The 24 young listeners with normal hearing (19 to 29 years, mean = 23.3 years) were from the local university and had normal hearing (≤20 dB HL; American National Standards Institute, 2004) at the 250–8000 Hz octave intervals. The 48 older listeners with sensorineural hearing loss (60 to 82 years, mean = 69.9 years) had the following inclusion criteria: (1) a threshold at 500 Hz between 15 and 30 dB HL, (2) a threshold at 1000 Hz between 20 and 40 dB HL, (3) a three-frequency pure-tone average (500, 1000, and 2000 Hz) of ≤40 dB HL, (4) word-recognition scores in quiet ≥40%, and (5) no history of middle ear or retrocochlear pathology as determined by an audiologic evaluation. Data Collection and Analysis: The speech materials were presented bilaterally in the following order: (1) the SPRINT at 50 dB HL, (2) two half lists of NU-6 words in quiet at 60 dB HL and 80 dB HL, and (3) the two 35-word lists of the WIN materials with the multitalker babble fixed at 60 dB HL. Data collection occurred during a 40–60 minute session. Recognition performances on each stimulus word were analyzed. Results: The listeners with normal hearing obtained 92.5% correct on the SPRINT with a 50% point on the WIN of 2.7 dB S/N. The listeners with hearing loss obtained 65.3% correct on the SPRINT and a WIN 50% point at 12.0 dB S/N. The SPRINT and WIN were significantly correlated (r = −0.81, p < .01), indicating that the SPRINT had good concurrent validity. The high-frequency, pure-tone average (1000, 2000, 4000 Hz) had higher correlations with the SPRINT, WIN, and NU-6 in quiet than did the traditional three-frequency pure-tone average (500, 1000, 2000 Hz). Conclusions: Graphically and numerically the SPRINT and WIN were highly related, which is indicative of good concurrent validity of the SPRINT.


2012 ◽  
Vol 23 (08) ◽  
pp. 577-589 ◽  
Author(s):  
Mary Rudner ◽  
Thomas Lunner ◽  
Thomas Behrens ◽  
Elisabet Sundewall Thorén ◽  
Jerker Rönnberg

Background: Recently there has been interest in using subjective ratings as a measure of perceived effort during speech recognition in noise. Perceived effort may be an indicator of cognitive load. Thus, subjective effort ratings during speech recognition in noise may covary both with signal-to-noise ratio (SNR) and individual cognitive capacity. Purpose: The present study investigated the relation between subjective ratings of the effort involved in listening to speech in noise, speech recognition performance, and individual working memory (WM) capacity in hearing impaired hearing aid users. Research Design: In two experiments, participants with hearing loss rated perceived effort during aided speech perception in noise. Noise type and SNR were manipulated in both experiments, and in the second experiment hearing aid compression release settings were also manipulated. Speech recognition performance was measured along with WM capacity. Study Sample: There were 46 participants in all with bilateral mild to moderate sloping hearing loss. In Experiment 1 there were 16 native Danish speakers (eight women and eight men) with a mean age of 63.5 yr (SD = 12.1) and average pure tone (PT) threshold of 47. 6 dB (SD = 9.8). In Experiment 2 there were 30 native Swedish speakers (19 women and 11 men) with a mean age of 70 yr (SD = 7.8) and average PT threshold of 45.8 dB (SD = 6.6). Data Collection and Analysis: A visual analog scale (VAS) was used for effort rating in both experiments. In Experiment 1, effort was rated at individually adapted SNRs while in Experiment 2 it was rated at fixed SNRs. Speech recognition in noise performance was measured using adaptive procedures in both experiments with Dantale II sentences in Experiment 1 and Hagerman sentences in Experiment 2. WM capacity was measured using a letter-monitoring task in Experiment 1 and the reading span task in Experiment 2. Results: In both experiments, there was a strong and significant relation between rated effort and SNR that was independent of individual WM capacity, whereas the relation between rated effort and noise type seemed to be influenced by individual WM capacity. Experiment 2 showed that hearing aid compression setting influenced rated effort. Conclusions: Subjective ratings of the effort involved in speech recognition in noise reflect SNRs, and individual cognitive capacity seems to influence relative rating of noise type.


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Tom Gawliczek ◽  
Wilhelm Wimmer ◽  
Fabio Munzinger ◽  
Marco Caversaccio ◽  
Martin Kompis

Objective. To measure the audiological benefit of the Baha SoundArc, a recently introduced nonimplantable wearing option for bone conduction sound processor, and to compare it with the known softband wearing option in subjects with normal cochlear function and a purely conductive bilateral hearing loss.Methods. Both ears of 15 normal hearing subjects were occluded for the time of the measurement, yielding an average unaided threshold of 49 dB HL (0.5 – 4 kHz). Soundfield thresholds, speech understanding in quiet and in noise, and sound localization were measured in unaided conditions and with 1 or 2 Baha 5 sound processors mounted on either a softband or a SoundArc device.Results. Soundfield thresholds and speech reception thresholds were improved by 19.5 to 24.8 dB (p<.001), when compared to the unaided condition. Speech reception thresholds in noise were improved by 3.7 to 4.7 dB (p<.001). Using 2 sound processors rather than one improved speech understanding in noise for speech from the direction of the2nddevice and sound localization error by 23° to 28°. No statistically significant difference was found between the SoundArc and the softband wearing options in any of the tests.Conclusions. Bone conduction sound processor mounted on a SoundArc or on a softband resulted in considerable improvements in hearing and speech understanding in subjects with a simulated, purely conductive, and bilateral hearing loss. No significant difference between the 2 wearing options was found. Using 2 sound processors improves sound localization and speech understanding in noise in certain spatial settings.


Sign in / Sign up

Export Citation Format

Share Document