scholarly journals Clinical Implementation of Transcranial Direct Current Stimulation in Aphasia: A Survey of Speech-Language Pathologists

2020 ◽  
Vol 29 (3) ◽  
pp. 1376-1388
Author(s):  
Lynsey M. Keator ◽  
Alexandra Basilakos ◽  
Christopher Rorden ◽  
Jordan Elm ◽  
Leonardo Bonilha ◽  
...  

Purpose The objectives of this study are to (a) identify speech-language pathologists' (SLPs') familiarity with transcranial direct current stimulation (tDCS), (b) quantify what SLPs consider necessary tDCS-related improvement in aphasia severity (i.e., tDCS enhancement; desired improvement above and beyond traditional behavioral therapy) to implement this adjuvant therapy for the clinical management of aphasia, and (c) identify concerns that could potentially hinder the clinical adoption of tDCS. Method A brief (14-question) survey was disseminated via e-mail and social media outlets targeting SLPs working with individuals with aphasia. Results Two hundred twenty-one individuals responded, and 155 valid surveys were analyzed. Seventy-one percent of participants reported familiarity with tDCS prior to taking the survey. Clinicians reported a desired mean enhancement of 22.9% additional points on the Western Aphasia Battery–Revised Aphasia Quotient. Importantly, 94.2% of SLPs reported concerns regarding the implementation of tDCS in clinical settings (i.e., safety, cost, administrative approval, reimbursement and training). Conclusions This is the first study to identify SLPs' perspectives regarding the clinical adoption of tDCS. Results suggest the majority of queried SLPs were familiar with tDCS prior to taking the survey. Although SLPs report a desired improvement of approximately 23% additional points on the Western Aphasia Battery–Revised Aphasia Quotient to consider adopting tDCS into practice, many SLPs reported concerns regarding clinical adoption. Responses from the current survey offer important preliminary evidence to begin bridging the research-to-practice gap as it relates to the clinical implementation of tDCS. Relatedly, these results will inform future clinical trials.

F1000Research ◽  
2020 ◽  
Vol 9 ◽  
pp. 116
Author(s):  
Pia Van Noppen ◽  
Kim van Dun ◽  
Siel Depestele ◽  
Stefanie Verstraelen ◽  
Raf Meesen ◽  
...  

Background: Burnout is characterized by deficiencies in attention and several components of the working memory, of which the lingering effects of impaired attention and executive functions are the most frustrating. We hypothesized that anodal transcranial direct current stimulation (atDCS) over the left dorsolateral prefrontal cortex (DLPFC) can improve the executive control of attention and possibly several other components of working memory in patients with burnout. Methods: This was a randomized double-blind sham-controlled pilot study with two groups. Patients with burnout received three weeks of daily sessions (15 sessions in total) of atDCS or sham stimulation in addition to three weekly sessions of standard behavioral therapy. The primary outcome measure was attention and the central executive of the working memory. Secondary, the effect of atDCS was measured on other components of working memory, on burnout and depression scores, and on quality of life (QoL). Results: We enrolled and randomly assigned 16 patients to a sham or real stimulation group, 15 (7 sham, 8 real) were included in the analysis. atDCS had a significant impact on attention. Post-hoc comparisons also revealed a trend towards more improvement after real tDCS for inhibition and shifting, updating and control, and encoding. Both groups improved on burnout and depression scores. Conclusion: These data provide preliminary evidence for the value of atDCS over the left DLPFC in rehabilitating attention deficits, and possibly also central executive and encoding deficits, in burnout. However, the current study has some limitations, including the sample size and heterogeneous patient population. More elaborate studies are needed to elucidate the specific impact of atDCS over the left DLPFC on burnout. Trial registration: ISRCTN.com (ISRCTN94275121) 17/11/19


F1000Research ◽  
2020 ◽  
Vol 9 ◽  
pp. 116
Author(s):  
Pia Van Noppen ◽  
Kim van Dun ◽  
Siel Depestele ◽  
Stefanie Verstraelen ◽  
Raf Meesen ◽  
...  

Background: Burnout is characterized by deficiencies in attention and several components of the working memory. It has been shown that cognitive behavioral therapy can have a positive effect on burnout and depressive symptoms, however, the lingering effects of impaired attention and executive functions are the most frustrating. We hypothesized that anodal transcranial direct current stimulation (atDCS) over the left dorsolateral prefrontal cortex (DLPFC) can improve the executive control of attention and possibly several other components of working memory in patients with burnout. Methods: This was a randomized double-blind sham-controlled pilot study with two groups. Patients with burnout received three weeks of daily sessions (15 sessions in total) of atDCS or sham stimulation in addition to three weekly sessions of standard behavioral therapy. The primary outcome measure was attention and the central executive of the working memory. Secondary, the effect of atDCS was measured on other components of working memory, on burnout and depression scores, and on quality of life (QoL). Results: We enrolled and randomly assigned 16 patients to a sham or real stimulation group, 15 (7 sham, 8 real) were included in the analysis. atDCS had a significant impact on attention. Post-hoc comparisons also revealed a trend towards more improvement after real tDCS for inhibition and shifting, updating and control, and encoding. Both groups improved on burnout and depression scores. Conclusion: These data provide preliminary evidence for the value of atDCS over the left DLPFC in rehabilitating attention deficits, and possibly also central executive and encoding deficits, in burnout. However, the current study has some limitations, including the sample size and heterogeneous patient population. More elaborate studies are needed to elucidate the specific impact of atDCS over the left DLPFC on burnout. Trial registration: ISRCTN.com ( ISRCTN94275121) 17/11/19


2020 ◽  
Vol 10 (2) ◽  
pp. 96 ◽  
Author(s):  
Craig D. Workman ◽  
Alexandra C. Fietsam ◽  
Ergun Y. Uc ◽  
Thorsten Rudroff

People with Parkinson’s disease (PwPD) often experience gait and balance problems that substantially impact their quality of life. Pharmacological, surgical, and rehabilitative treatments have limited effectiveness and many PwPD continue to experience gait and balance impairment. Transcranial direct current stimulation (tDCS) may represent a viable therapeutic adjunct. The effects of lower intensity tDCS (2 mA) over frontal brain areas, in unilateral and bilateral montages, has previously been explored; however, the effects of lower and higher intensity cerebellar tDCS (2 mA and 4 mA, respectively) on gait and balance has not been investigated. Seven PwPD underwent five cerebellar tDCS conditions (sham, unilateral 2 mA, bilateral 2 mA, unilateral 4 mA, and bilateral 4 mA) for 20 min. After a 10 min rest, gait and balance were tested. The results indicated that the bilateral 4 mA cerebellar tDCS condition had a significantly higher Berg Balance Scale score compared to sham. This study provides preliminary evidence that a single session of tDCS over the cerebellum, using a bilateral configuration at a higher intensity (4 mA), significantly improved balance performance. This intensity and cerebellar configuration warrants future investigation in larger samples and over repeated sessions.


Pain Medicine ◽  
2019 ◽  
Vol 21 (12) ◽  
pp. 3615-3623 ◽  
Author(s):  
Rodrigo Pegado ◽  
Luana Karyne Silva ◽  
Hégila da Silva Dantas ◽  
Hialison Andrade Câmara ◽  
Karime Andrade Mescouto ◽  
...  

Abstract Objective The aim of this trial was to investigate the effects of five consecutive sessions of anodal transcranial direct current stimulation (tDCS) over the motor cortex (M1) on pain, mood, and physical performance in patients with primary dysmenorrhea (PDM). Design This is a double-blind randomized controlled trial. Subjects Twenty-two participants with PDM according to the No. 345-PDM Consensus Guideline were included. Methods Eleven active treatment and 11 sham stimulation patients received five applications over a one-week period. The primary outcome measures were pain evaluated by numeric rating scale (NRS) and McGill Questionnaire score. Secondary outcomes measures were responses to the Positive and Negative Affect Schedule (PANAS), Hamilton Anxiety Scale (HAM-A), grip strength, and six-minute walk test (6MWT). Baseline data were performed during the first menstrual cycle, and during the second menstrual cycle, participants were conducted to tDCS treatment, and postintervention data were collected. Results The intervention provided significant improvements on NRS in active tDCS, shown as an interaction between group intervention vs pre/postintervention vs days of menstrual cycle (Wald x2 = 10.54, P = 0.005), main effect of days of menstrual cycle (Wald x2 = 25.42, P < 0.001), and pre/postintervention (Wald x2 = 6.97, P = 0.008). McGill showed an interaction effect between pre/postintervention and group of stimulation (Wald x2 = 18.45, P = 0.001), with a large reduction in active tDCS (P < 0.001, d = 0.75). Psychological and functional outcomes did not differ between groups or pre/postintervention. Conclusions tDCS could provide pain relief in subjects with PDM. These results provide some preliminary evidence for the potential role of tDCS as a contributor to the management of symptoms of PDM.


2020 ◽  
Vol 10 (10) ◽  
pp. 719
Author(s):  
Brice T. Cleland ◽  
Melissa Galick ◽  
Amy Huckstep ◽  
Laura Lenhart ◽  
Sangeetha Madhavan

Transcranial direct current stimulation (tDCS) has strong potential for outpatient clinical use, but feasibility and safety of tDCS has only been evaluated in laboratory and inpatient clinical settings. The objective of this study was to assess feasibility and safety of tDCS for stroke in an outpatient clinical setting. Individuals with stroke in outpatient therapy received tDCS during physical therapy sessions. Feasibility was assessed with screening, enrollment, withdrawal, and adherence numbers, tDCS impressions, and perceived benefits and detriments of tDCS. Acute changes in fatigue and self-reported function and pre-post changes in fatigue were also assessed. Safety was assessed as adverse events and side effects. In total, 85 individuals were screened, and 10 were enrolled. Most exclusions were unrelated to clinical feasibility. In total, 3 participants withdrew, so 7 participants completed 2 sessions/week for 5–6 weeks with 100% adherence. In total, 71% reported positive impressions of tDCS. tDCS setup decreased to 5–7 min at end of study. There was one adverse event unrelated to tDCS. Mild to moderate side effects (tingling, itching, pinching, and fatigue) were experienced. In total, 86% of participants recounted benefits of tDCS. There were acute improvements in function and energy. Results support the feasibility and safety of tDCS in an outpatient clinical setting.


Sign in / Sign up

Export Citation Format

Share Document