Dynamics of the Chest Wall during Speech Production: Function of the Thorax, Rib Cage, Diaphragm, and Abdomen

1976 ◽  
Vol 19 (2) ◽  
pp. 297-356 ◽  
Author(s):  
Thomas J. Hixon ◽  
Jere Mead ◽  
Michael D. Goldman

Anteroposterior diameters of the rib cage and abdomen and esophageal and gastric pressures were measured in normal subjects in upright and supine body positions during respiratory maneuvers and utterance tasks. Data were charted in relative motion diagrams and various motion-pressure diagrams which enabled graphic solution for muscular pressures exerted by the chest wall and individually by the thorax, rib cage, diaphragm, and abdomen during utterances. Behaviors of the chest wall and its parts were found to depend upon lung volume, utterance loudness, body position, and utterance task. For utterances encompassing most of the vital capacity, chest wall effort was at first net inspiratory and later net expiratory. The former was governed predominately by the rib cage and the abdomen in the upright body position and by the diaphragm in the supine position. For conversational speech, chest wall effort was continuously expiratory, control being vested in the rib cage and the abdomen in the upright body position and typically in the rib cage alone in the supine position. Mechanisms operating during the utterances are discussed, particularly those involved with conversational speech production. We conclude that the abdomen occupies an especially important role in running conversational speech in that it mechanically tunes the diaphragm to increase the latter’s inspiratory efficiency and thus enables man to minimally interrupt his ongoing speech for needed inspiratory pauses. We also discuss the relevance of our findings to clinical endeavors.

1985 ◽  
Vol 58 (5) ◽  
pp. 1703-1712 ◽  
Author(s):  
F. D. McCool ◽  
S. H. Loring ◽  
J. Mead

We examined chest wall and rib cage configuration in seven normal subjects during a variety of breathing maneuvers. Magnetometers were used to measure lower rib cage anteroposterior, lower rib cage transverse, upper rib cage anteroposterior, and abdomen anteroposterior diameters. Changes of these diameters were recorded during voluntary maneuvers, rebreathing, reading, and “natural” breathing. Relative motion of the rib cage and abdomen was displayed with the rib cage represented by the product of its lower anteroposterior and transverse diameters. During spontaneous breathing the rib cage and chest wall are near their relaxation configuration. During chemically driven ventilation the chest wall and rib cage progressively depart from this configuration. Much greater distortions of the chest wall and rib cage occurred during some voluntary maneuvers. Additionally, esophageal pressure and gastric pressure were measured during voluntary distortion of the rib cage. Substantial changes in lower rib cage shape occurred during voluntary maneuvers when compared with spontaneous breaths at the same transmural pressure. We conclude that the unitary behavior of the rib cage in normal subjects requires muscle coordination.


1973 ◽  
Vol 16 (1) ◽  
pp. 78-115 ◽  
Author(s):  
Thomas J. Hixon ◽  
Michael D. Goldman ◽  
Jere Mead

The chest wall has been treated as a two-part kinematic system comprised of the rib cage and diaphragm-abdomen in parallel, and wherein the volume displaced by each part is linearly related to the motions of points within it. Using measurements of changes in anteroposterior diameters of the rib cage and abdomen, we studied subjects in upright and supine postures during several respiratory maneuvers and utterance tasks. Results are charted in relative motion diagrams (rib cage vs abdomen), which include the relaxed configuration of the chest wall and departures therefrom during utterances. For conversation, reading, and singing, lung volume events were restricted to the midvolume range and were dependent upon body posture and utterance loudness. Relative volume contributions of the two parts differed for subjects and utterances and ranged from all rib cage displacement to all abdominal displacement. During utterances, the chest wall was distorted from its relaxed configuration, and differently so in the two postures studied. Potential mechanisms responsible for these distortions are discussed. We conclude that the distortions observed constitute a “volume platform” or posturing of the chest wall, off of which the speaker produces speech but does not significantly further distort the system in providing the changes in driving pressure required for typical utterances.


1978 ◽  
Vol 45 (4) ◽  
pp. 581-589 ◽  
Author(s):  
V. P. Vellody ◽  
M. Nassery ◽  
W. S. Druz ◽  
J. T. Sharp

With a linearized respiratory magnetometer, measurements of anteroposterior and lateral diameters of both the rib cage and the abdomen were made at functional residual capacity and continuously during tidal breathing. Twenty-five subjects with normal respiratory systems were studied in the sitting, supine, lateral decubitus, and prone body positions. When subjects changed from sitting to supine position anteroposterior diameters of both rib cage and abdomen decreased while their lateral diameters increased. Both anteroposterior and lateral tidal excursions of the rib cage decreased; those of the abdomen increased. When subjects turned from supine to lateral decubitus position both anteroposterior diameters increased and the lateral diameters decreased. This was associated with an increase in both lateral excursions and a decrease in the abdominal anteroposterior excursions. Diameters and tidal excursions in the prone position resembled those in the supine position. Diameter changes could be explained by gravitational effects. Differences in tidal excursions accompanying body position change were probably related to 1) differences in the distribution of respiratory muscle force, 2) differences in the activity or mechanical advantage of various inspiratory muscles, and 3) local compliance changes in parts of the rib cage and abdomen.


1977 ◽  
Vol 43 (4) ◽  
pp. 600-602 ◽  
Author(s):  
K. Tusiewicz ◽  
H. Moldofsky ◽  
A. C. Bryan ◽  
M. H. Bryan

The pattern of motion of the rib cage and abdomen/diaphragm was studied in three normal subjects during sleep. Sleep state was monitored by electroencephalograph and electrocculograph. Intercostal electromyographs (EMG's) were recorded from the second interspace parasternally. Abdominothoracic motion was monitored with magnetometers and these signals calibrated by isovolume lines either immediately before going to sleep, or if there was movement, on awakening. Respiration was recorded using a jerkin plethysmograph. In the awake subject in the supine position, the rib cage contributed 44% to the tidal volume and had essentially the same contribution in quiet sleep. However, in active or rapid eye movement sleep the rib cage contribution fell to 19% of the tidal volume. This was accompanied by a marked reduction in the intercostal EMG. With the subject in the upright position the rib cage appears to be passively driven by the diaphragm. However, the present data suggest that active contraction of the intercostal muscles is required for normal rib cage expansion in the supine position.


1989 ◽  
Vol 66 (1) ◽  
pp. 350-359 ◽  
Author(s):  
G. M. Barnas ◽  
K. Yoshino ◽  
D. Stamenovic ◽  
Y. Kikuchi ◽  
S. H. Loring ◽  
...  

We measured chest wall "pathway impedances" (ratios of pressure changes to rates of volume displacement at the surface) with esophageal and gastric balloons and inductance plethysmographic belts around the rib cage and abdomen during forced volume oscillations (5% vital capacity, 0.5–4 Hz) at the mouth of five relaxed, seated subjects. Volume displacements of the total chest wall surface, measured by summing the rib cage and abdominal signals, approximated measurements using volume-displacement, body plethysmography over the entire frequency range. Resistance (R) and elastance (E) of the diaphragm-abdomen pathway were several times greater than those of the rib cage pathway, except at the highest frequencies where diaphragm-abdominal E was small. R and E of the diaphragm-abdomen pathway and of the rib cage pathway showed the same frequency dependencies as that of the total chest wall: R decreased markedly as frequency increased, and E (especially in the diaphragm-abdomen) decreased at the highest frequencies. These results suggest that the chest wall can be reasonably modeled, over the frequency range studied, as a system with two major pathways for displacement. Each pathway seems to exhibit behavior that reflects nonlinear, rate-independent dissipation as well as viscoelastic properties. Impedances of these pathways are useful indexes of changes in chest wall mechanical behavior in different situations.


2020 ◽  
Vol 128 (1) ◽  
pp. 78-86 ◽  
Author(s):  
Iacopo Pasticci ◽  
Paolo Cadringher ◽  
Lorenzo Giosa ◽  
Michele Umbrello ◽  
Paolo Formenti ◽  
...  

Esophageal pressure has been suggested as adequate surrogate of the pleural pressure. We investigate after lung surgery the determinants of the esophageal and intrathoracic pressures and their differences. The esophageal pressure (through esophageal balloon) and the intrathoracic/pleural pressure (through the chest tube on the surgery side) were measured after surgery in 28 patients immediately after lobectomy or wedge resection. Measurements were made in the nondependent lateral position (without or with ventilation of the operated lung) and in the supine position. In the lateral position with the nondependent lung, collapsed or ventilated, the differences between esophageal and pleural pressure amounted to 4.4 ± 1.6 and 5.1 ± 1.7 cmH2O. In the supine position, the difference amounted to 7.3 ± 2.8 cmH2O. In the supine position, the estimated compressive forces on the mediastinum were 10.5 ± 3.1 cmH2O and on the iso-gravitational pleural plane 3.2 ± 1.8 cmH2O. A simple model describing the roles of chest, lung, and pneumothorax volume matching on the pleural pressure genesis was developed; modeled pleural pressure = 1.0057 × measured pleural pressure + 0.6592 ( r2 = 0.8). Whatever the position and the ventilator settings, the esophageal pressure changed in a 1:1 ratio with the changes in pleural pressure. Consequently, chest wall elastance (Ecw) measured by intrathoracic (Ecw = ΔPpl/tidal volume) or esophageal pressure (Ecw = ΔPes/tidal volume) was identical in all the positions we tested. We conclude that esophageal and pleural pressures may be largely different depending on body position (gravitational forces) and lung-chest wall volume matching. Their changes, however, are identical. NEW & NOTEWORTHY Esophageal and pleural pressure changes occur at a 1:1 ratio, fully justifying the use of esophageal pressure to compute the chest wall elastance and the changes in pleural pressure and in lung stress. The absolute value of esophageal and pleural pressures may be largely different, depending on the body position (gravitational forces) and the lung-chest wall volume matching. Therefore, the absolute value of esophageal pressure should not be used as a surrogate of pleural pressure.


1992 ◽  
Vol 72 (3) ◽  
pp. 1032-1038 ◽  
Author(s):  
M. R. Wolfson ◽  
J. S. Greenspan ◽  
K. S. Deoras ◽  
J. L. Allen ◽  
T. H. Shaffer

To determine the influence of body position on chest wall and pulmonary function, we studied the ventilatory, pulmonary mechanics, and thoracoabdominal motion profiles in 20 preterm infants recovering from respiratory disease who were positioned in both the supine and prone position. Thoracoabdominal motion was assessed from measurements of relative rib cage and abdominal movement and the calculated phase angle (an index of thoracoabdominal synchrony) of the rib and abdomen Lissajous figures. The ventilatory and pulmonary function profiles were assessed from simultaneous measurements of transpulmonary pressure, airflow, and tidal volume. The infants were studied in quiet sleep, and the order of positioning was randomized across patients. The results demonstrated no significant difference in ventilatory and pulmonary function measurements as a function of position. In contrast, there was a significant reduction (-49%) in the phase angle of the Lissajous figures and an increase (+66%) in rib cage motion in prone compared with the supine position. In addition, the degree of improvement in phase angle in the prone position was correlated to the severity of asynchrony in the supine position. We speculate that the improvement in thoracoabdominal synchrony in the prone position is related to alterations of chest wall mechanics and respiratory muscle tone mediated by a posturally related shift in the area of apposition of the diaphragm to the anterior inner rib cage wall and increase in passive tension of the muscles of the rib cage. This study suggests that the mechanical advantage associated with prone positioning may confer a useful alternative breathing pattern to the preterm infant in whom elevated respiratory work loads and respiratory musculoskeletal immaturity may predispose to respiratory failure.


1987 ◽  
Vol 62 (2) ◽  
pp. 718-724 ◽  
Author(s):  
J. L. Allen ◽  
R. G. Castile ◽  
J. Mead

The maximal expiratory-flow volume (MEFV) curve in normal subjects is thought to be relatively effort independent over most of the vital capacity (VC). We studied seven normal males and found positive effort dependence of maximal expiratory flow between 50 and 80% VC in five of them, as demonstrated by standard isovolume pressure-flow (IVPF) curves. We then attempted to distinguish the effects of chest wall conformational changes from possible mechanisms intrinsic to the lungs as an explanation for positive effort dependence. IVPF curves were repeated in four of the subjects who had demonstrated positive effort dependence. Transpulmonary pressure was varied by introducing varied resistances at the mouth but effort, as defined by pleural pressure, was maintained constant. By this method, chest wall conformation at a given volume would be expected to remain the same despite changing transpulmonary pressures. When these four subjects were retested in this way, no increases in flow with increasing transpulmonary pressure were found. In further studies, voluntarily altering the chest wall pattern of emptying (as defined by respiratory inductive plethysmography) did however alter maximal expiratory flows, with transpulmonary pressure maintained constant. We conclude that maximal expiratory flow can increase with effort over a larger portion of the vital capacity than is commonly recognized, and this effort dependence may be the result of changes in central airway mechanical properties that occur in relation to changes in chest wall shape during forced expiration.


1990 ◽  
Vol 68 (4) ◽  
pp. 1605-1614 ◽  
Author(s):  
R. Sartene ◽  
P. Martinot-Lagarde ◽  
M. Mathieu ◽  
A. Vincent ◽  
M. Goldman ◽  
...  

A new device that utilizes the voltages induced in separate coils encircling the rib cage and abdomen by a magnetic field is described for measurement of cross-sectional areas of the human chest wall (rib cage and abdomen) and their variation during breathing. A uniform magnetic field (1.4 X 10(-7) Tesla at 100 kHz) is produced by generating an alternating current at 100 kHz in two square coils, 1.98 m on each side, parallel to the planes of the areas to be measured and placed symmetrically cephalad and caudad to these planes at a mean distance of 0.53 m. We demonstrated that the accuracy of the device on well-defined surfaces (squares, circles, rectangles, ellipses) was within 1% in all cases. Observed errors are due primarily to small inhomogeneities of the magnetic field and variation of the orientation of the coil relative to the field. Using a second magnetic field (80 kHz) perpendicular to the first, we measured the errors due to nonparallel orientation during quiet breathing and inspiratory capacity maneuvers. In 10 normal subjects, orientation effects were less than 2% for the rib cage and less than 0.7% for the abdomen. In five of these subjects, orientation effects at functional residual capacity in lateral and seated postures were generally less than or equal to 5%, but estimated tidal volume during spontaneous breathing was comparable to measurements in the supine posture. In five curarized patients, we assessed the linearity of volume-motion relationships of the rib cage and abdomen, comparing cross-sectional area and circumference measurements. Departures from linearity using cross-sectional areas were only one-third of those using circumferences. In seven normal subjects we compared cross-sectional area measurements with respiratory inductive plethysmography (RIP) and found comparable estimates of lung volume change over a wide range of relative rib cage contributions to tidal volume (-5 to 105%), with slightly higher standard deviations for the RIP (SD = 10% for RIP; SD = 4% for cross-sectional area).


2015 ◽  
Vol 40 (2) ◽  
pp. 178-183
Author(s):  
Letícia Silva ◽  
Jacqueline de Melo Barcelar ◽  
Catarina Souza Rattes ◽  
Larissa Bouwman Sayão ◽  
Cyda Albuquerque Reinaux ◽  
...  

The objective of this study was to analyze thoraco-abdominal kinematics in obese children in seated and supine positions during spontaneous quiet breathing. An observational study of pulmonary function and chest wall volume assessed by optoelectronic plethysmography was conducted on 35 children aged 8–12 years that were divided into 2 groups according to weight/height ratio percentiles: there were 18 obese children with percentiles greater than 95 and 17 normal weight children with percentiles of 5–85. Pulmonary function (forced expiratory volume in 1 s (FEV1); forced vital capacity (FVC); and FEV1/FVC ratio), ventilatory pattern, total and compartment chest wall volume variations, and thoraco-abdominal asynchronies were evaluated. Tidal volume was greater in seated position. Pulmonary and abdominal rib cage tidal volume and their percentage contribution to tidal volume were smaller in supine position in both obese and control children, while abdominal tidal volume and its percentage contribution was greater in the supine position only in obese children and not in controls. No statistically significant differences were found between obese and control children and between supine and seated positions regarding thoraco-abdominal asynchronies. We conclude that in obese children thoraco-abdominal kinematics is influenced by supine posture, with an increase of the abdominal and a decreased rib cage contribution to ventilation, suggesting that in this posture areas of hypoventilation can occur in the lung.


Sign in / Sign up

Export Citation Format

Share Document