Dietary substitution of soy and rapeseed protein concentrates for fish meal, and their effects on growth and nutrient utilization in gilthead seabream Sparus aurata L.

2000 ◽  
Vol 31 (7) ◽  
pp. 595-601 ◽  
Author(s):  
G Wm Kissil ◽  
I Lupatsch ◽  
D A Higgs ◽  
R W Hardy
Life ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 117 ◽  
Author(s):  
Shajahan Ferosekhan ◽  
Serhat Turkmen ◽  
Hanlin Xu ◽  
Juan Manuel Afonso ◽  
Maria Jesus Zamorano ◽  
...  

The principle aim of this study is to elucidate the relationship between the fatty acid desaturase 2 gene (fads2) expression pattern in peripheral blood cells (PBCs) and liver of gilthead seabream (GSB), Sparus aurata broodstock in order to determine the possible use of fads2 expression as a potential biomarker for the selection of broodstock. This selection could be utilized for breeding programs aiming to improve reproduction, health, and nutritional status. Passive Integrated Transponder (PIT)-tagged GSB broodstock (Male-1.22 ± 0.20 kg; 44.8 ± 2 cm and female-2.36 ± 0.64 kg; 55.1 cm) were fed a diet containing low levels of fish meal and fish oil (EPA 2.5; DHA 1.7 and n-3 LC-PUFA 4.6% TFA) for one month. After the feeding period, fads2 expression in PBCs and liver of both male and female broodstock were highly significantly correlated (r = 0.89; p < 0.001). Additionally, in male broodstock, liver fads2 expression was significantly correlated (p < 0.05) to liver contents in 16:0 (r = 0.95; p = 0.04) and total saturates (r = 0.97; p = 0.03) as well as to 20:3n–6/20:2n–6 (r = 0.98; p = 0.02) a Fads2 product/precursor ratio. Overall, we found a positive and significant correlation between fads2 expression levels in the PBCs and liver of GSB broodstock. PBCs fads2 expression levels indicate a strong potential for utilization as a non-invasive method to select animals having increased fatty acid bioconversion capability, better able to deal with diets free of fish meal and fish oil.


Animals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 2138
Author(s):  
Domitilla Pulcini ◽  
Fabrizio Capoccioni ◽  
Simone Franceschini ◽  
Marco Martinoli ◽  
Emilio Tibaldi

The pattern of yellowish pigmentation of the skin was assessed in gilthead seabream (Sparus aurata) fed for 12 weeks iso-proteic (45%) and iso-lipidic (20%) diets deprived of fish meal and containing either a blend of vegetable protein-rich ingredients or where graded levels of the vegetable protein blend were replaced by insect (Hermetia illucens—10%, 20% or 40%) pupae meal, poultry by-product meal (20%, 30% or 40%), red swamp crayfish meal (10%) and marine microalgae (Tisochrysis lutea and Tetraselmis suecica—10%) dried biomass. Digital images of fish fed diets differing in protein sources were analyzed by means of an automatic and non-invasive image analysis tool, in order to determine the number of yellow pixels and their dispersion on the frontal and lateral sides of the fish. The relationship between the total carotenoid concentration in the diet and the number of yellow pixels was investigated. Test diets differently affected gilthead seabream skin pigmentation both in the forefront and the operculum, due to their carotenoid content. The highest yellow pixels’ number was observed with the diet containing microalgae. Fish fed poultry by-product meal were characterized by the lowest yellow pixels’ number, diets containing insect meal had an intermediate coloring capacity. The vegetable control, the microalgae mix diet and the crayfish diet had significantly higher values of yellow pixels at both inspected skin sites.


Aquaculture ◽  
2019 ◽  
Vol 511 ◽  
pp. 734220 ◽  
Author(s):  
Maroua Sabbagh ◽  
Roberta Schiavone ◽  
Giulio Brizzi ◽  
Benedetto Sicuro ◽  
Loredana Zilli ◽  
...  

Aquaculture ◽  
1999 ◽  
Vol 179 (1-4) ◽  
pp. 277-290 ◽  
Author(s):  
M.J Caballero ◽  
G López-Calero ◽  
J Socorro ◽  
F.J Roo ◽  
M.S Izquierdo ◽  
...  

2022 ◽  
Vol 12 ◽  
Author(s):  
Mariana Ferreira ◽  
Pedro C. Ribeiro ◽  
Laura Ribeiro ◽  
Marisa Barata ◽  
Valentina F. Domingues ◽  
...  

Efforts have been made to find natural, highly nutritious alternatives to replace fish meal (FM) and fish oil (FO), which can simultaneously promote fish health and improve the nutritional quality of filets for human consumption. This study evaluated the impact of biofortified diets containing microalgae (as replacement for FM and FO), macroalgae (as natural source of iodine) and selenised yeast (organic source of selenium) on gilthead seabream growth, nutrient utilization, tissue composition and gene expression. A control diet (CTRL) with 15% FM and 5.5% FO was compared with three experimental diets (AD1, AD2, and AD3), where a microalgae blend (Chlorella sp., Tetraselmis sp., and DHA-rich Schizochytrium sp.) replaced 33% of FM. Diet AD1 contained 20% less FO. Diets were supplemented with Laminaria digitata (0.4% AD1 and AD2; 0.8% AD3) and selenised yeast (0.02% AD1 and AD2; 0.04% AD3). After feeding the experimental diets for 12 weeks, growth was similar in fish fed AD1, AD2, and CTRL, indicating that microalgae meal can partially replace both FM and FO in diets for seabream. But AD3 suppressed fish growth, suggesting that L. digitata and selenised yeast supplementation should be kept under 0.8 and 0.04%, respectively. Despite lower lipid intake and decreased PUFAs bioavailability in fish fed AD3, compared to CTRL, hepatic elovl5 was upregulated resulting in a significant increase of muscle EPA + DHA. Indeed, filets of fish fed AD2 and AD3 provided the highest EPA + DHA contents (0.7 g 100 g–1), that are well above the minimum recommended values for human consumption. Fish consuming the AD diets had a higher retention and gain of selenium, while iodine gain remained similar among diets. Upregulation of selenoproteins (gpx1, selk, and dio2) was observed in liver of fish fed AD1, but diets had limited impact on fish antioxidant status. Overall, results indicate that the tested microalgae are good sources of protein and lipids, with their LC-PUFAs being effectively accumulated in seabream muscle. Selenised yeast is a good fortification vehicle to increase selenium levels in fish, but efforts should be placed to find new strategies to fortify fish in iodine.


Sign in / Sign up

Export Citation Format

Share Document