scholarly journals Proliferation of distinct human T cell subsets in response to live, killed or soluble extracts of Mycobacterium tuberculosis and Myco. avium

1996 ◽  
Vol 104 (3) ◽  
pp. 419-425 ◽  
Author(s):  
S. ESIN ◽  
G. BATONI ◽  
G. KALLENIUS ◽  
H. GAINES ◽  
M. CAMPA ◽  
...  
2015 ◽  
Vol 11 (3) ◽  
pp. e1004671 ◽  
Author(s):  
Krista E. van Meijgaarden ◽  
Mariëlle C. Haks ◽  
Nadia Caccamo ◽  
Francesco Dieli ◽  
Tom H. M. Ottenhoff ◽  
...  

1984 ◽  
Vol 72 (3) ◽  
pp. 213-214 ◽  
Author(s):  
J. Dufer ◽  
J. Bernard
Keyword(s):  
T Cell ◽  

1995 ◽  
Vol 63 (4) ◽  
pp. 1491-1497 ◽  
Author(s):  
H Boesen ◽  
B N Jensen ◽  
T Wilcke ◽  
P Andersen

Blood ◽  
1982 ◽  
Vol 59 (1) ◽  
pp. 198-201 ◽  
Author(s):  
JJ Hooks ◽  
BF Haynes ◽  
B Detrick-Hooks ◽  
LF Diehl ◽  
TL Gerrard ◽  
...  

Abstract We report a patient with a disease characterized by proliferation of T cells with Fc receptors for IgG (TG). However, unlike lymphoid cells from normal individuals or from patients with other lymphoid malignancies, the patient's lymphocytes spontaneously produced gamma interferon (IFN-gamma) in vitro. The peripheral lymphocytes consisted of 95% TG cells, which exhibited the morphological characteristics of T- cell chronic lymphocytic leukemia (CLL) and were normal on cytochemical and chromosome analysis. The majority of TG cells were OKT3+, OKT8+, and OKT4-, 3A1-. These cells failed to express suppressor cell activity and displayed depressed levels of natural killer activity, but mediated antibody-dependent cell-mediated cytotoxicity. The spontaneous production of IFN-gamma by human peripheral lymphoid cells as demonstrated in this study may serve as a probe for studying the relationship between IFN-gamma and the proliferation of human T-cell subsets.


mBio ◽  
2014 ◽  
Vol 5 (1) ◽  
Author(s):  
Richard Copin ◽  
Mireia Coscollá ◽  
Salome N. Seiffert ◽  
Graham Bothamley ◽  
Jayne Sutherland ◽  
...  

ABSTRACTTheMycobacterium tuberculosisgenome includes the large family ofpe_pgrsgenes, whose functions are unknown. Because of precedents in other pathogens in which gene families showing high sequence variation are involved in antigenic variation, a similar role has been proposed for thepe_pgrsgenes. However, the impact of immune selection onpe_pgrsgenes has not been examined. Here, we sequenced 27pe_pgrsgenes in 94 clinical strains from five phylogenetic lineages of theM. tuberculosiscomplex (MTBC). We found thatpe_pgrsgenes were overall more diverse than the remainder of the MTBC genome, but individual members of the family varied widely in their nucleotide diversity and insertion/deletion (indel) content: some were more, and others were much less, diverse than the genome average. Individualpe_pgrsgenes also differed in the ratio of nonsynonymous to synonymous mutations, suggesting that different selection pressures act on individualpe_pgrsgenes. Using bioinformatic methods, we tested whether sequence diversity inpe_pgrsgenes might be selected by human T cell recognition, the major mechanism of adaptive immunity to MTBC. We found that the large majority of predicted human T cell epitopes were confined to the conserved PE domain and experimentally confirmed the antigenicity of this domain in tuberculosis patients. In contrast, despite being genetically diverse, the PGRS domains harbored few predicted T cell epitopes. These results indicate that human T cell recognition is not a significant force driving sequence diversity inpe_pgrsgenes, which is consistent with the previously reported conservation of human T cell epitopes in the MTBC.IMPORTANCERecognition ofMycobacterium tuberculosisantigens by T lymphocytes is known to be important for immune protection against tuberculosis, but it is unclear whether human T cell recognition drives antigenic variation inM. tuberculosis. We previously discovered that the known human T cell epitopes in theM. tuberculosiscomplex are highly conserved, but we hypothesized that undiscovered epitopes with naturally occurring sequence variants might exist. To test this hypothesis, we examined thepe_pgrsgenes, a large family of genes that has been proposed to function in immune evasion byM. tuberculosis. We found that thepe_pgrsgenes exhibit considerable sequence variation, but the regions containing T cell epitopes and the regions of variation are distinct. These findings confirm that the majority of human T cell epitopes ofM. tuberculosisare highly conserved and indicate that selection forces other than T cell recognition drive sequence variation in thepe_pgrsgenes.


2007 ◽  
Vol 179 (11) ◽  
pp. 7406-7414 ◽  
Author(s):  
Victor Appay ◽  
Andreas Bosio ◽  
Stefanie Lokan ◽  
Yvonne Wiencek ◽  
Christian Biervert ◽  
...  

Life Sciences ◽  
2018 ◽  
Vol 209 ◽  
pp. 388-394
Author(s):  
Yi Jiang ◽  
Haican Liu ◽  
Xiangfeng Dou ◽  
Xiuqin Zhao ◽  
Machao Li ◽  
...  

Blood ◽  
1979 ◽  
Vol 53 (6) ◽  
pp. 1066-1075 ◽  
Author(s):  
EL Reinherz ◽  
LM Nadler ◽  
DS Rosenthal ◽  
WC Moloney ◽  
SF Schlossman

Abstract Circulating peripheral blood tumor cells in four cases of chronic lymphoproliferative disease were immunologically characterized. By the use of T-cell-specific heteroantisera and indirect immunofluorescence, all were shown to involve proliferation of malignant T cells. Three cases demonstrated morphologic and clinical features consistent with chronic lymphocytic leukemia (CLL), and one case presented as a lymphosarcoma cell leukemia. Antisera specific for normal human T-cell subsets defined the malignant T cells in each case as arising from the TH2--subset. This subset normally constitutes approximately 80% of human peripheral blood T cells. Terminal deoxynucleotidyl transferase (TdT) was not detected in any of the T-cell CLL cases, thus supporting the notion that T-cell CLL represents a malignancy of a mature phenotype. The one patient with lymphosarcoma whose tumor cells were TdT-positive subsequently developed T-cell acute lymphoblastic leukemia (ALL). Moreover, la-like antigen (p23,30) was detected on two of these tumor cell populations. In addition, it was shown that not all tumor cells were E-rosette-positive, since only cells from 3 of 4 patients were capable of forming spontaneous rosettes. These findings demonstrate that heteroantisera can provide an additional important tool for dissecting the heterogeneity of T-cell leukemias and for relating them to more differentiated normal T cells.


Sign in / Sign up

Export Citation Format

Share Document