scholarly journals Offspring fitness and parental effects as a function of inbreeding in Epilobium angustifolium (Onagraceae)

Heredity ◽  
1998 ◽  
Vol 80 (2) ◽  
pp. 173-179 ◽  
Author(s):  
Brian C Husband ◽  
Jane E Gurney
2020 ◽  
Vol 287 (1940) ◽  
pp. 20202538
Author(s):  
Rowan A. Lymbery ◽  
Jacob D. Berson ◽  
Jonathan P. Evans

The capacity for parents to influence offspring phenotypes via nongenetic inheritance is currently a major area of focus in evolutionary biology. Intriguing recent evidence suggests that sexual interactions among males and females, both before and during mating, are important mediators of such effects. Sexual interactions typically extend beyond gamete release, involving both sperm and eggs, and their associated fluids. However, the potential for gamete-level interactions to induce nongenetic parental effects remains under-investigated. Here, we test for such effects using an emerging model system for studying gamete interactions, the external fertilizer Mytilus galloprovincialis . We employed a split-ejaculate design to test whether exposing sperm to egg-derived chemicals (ECs) from a female would affect fertilization rate and offspring viability when those sperm were used to fertilize a different female's eggs. We found separate, significant effects of ECs from non-fertilizing females on both fertilization rate and offspring viability. The offspring viability effect indicates that EC-driven interactions can have nongenetic implications for offspring fitness independent of the genotypes inherited by those offspring. These findings provide a rare test of indirect parental effects driven exclusively by gamete-level interactions, and to our knowledge the first evidence that such effects occur via the gametic fluids of females.


Author(s):  
John R. Rowley

The morphology of the exine of many pollen grains, at the time of flowering, is such that one can suppose that transport of substances through the exine occurred during pollen development. Holes or channels, microscopic to submicroscopic, are described for a large number of grains. An inner part of the exine of Epilobium angustifolium L. and E. montanum L., which may be referred to as the endexine, has irregularly shaped channels early in pollen development although by microspore mitosis there is no indication of such channeling in chemically fixed material. The nucleus in microspores used in the experiment reported here was in prophase of microspore mitosis and the endexine, while lamellated in untreated grains, did not contain irregularly shaped channels. Untreated material from the same part of the inflorescence as iron treated stamens was examined following fixation with 0.1M glutaraldehyde in cacodylate-HCl buffer at pH 6.9 (315 milliosmoles) for 24 hrs, 4% formaldehyde in phosphate buffer at pH 7.2 (1,300 milliosmoles) for 12 hrs, 1% glutaraldehyde mixed with 0.1% osmium tetroxide for 20 min, osmium tetroxide in deionized water for 2 hrs and 1% glutaraldehyde mixed with 4% formaldehyde in 0.1M cacodylate-HCl buffer at pH 6.9 for two hrs.


Planta Medica ◽  
2008 ◽  
Vol 74 (09) ◽  
Author(s):  
I Kosalec ◽  
M Zovko ◽  
K Sankovic ◽  
D Kremer ◽  
S Pepeljnjak

Author(s):  
M.Y. Duan ◽  
H. Zhu ◽  
H. Wang ◽  
S.Y. Guo ◽  
H. Li ◽  
...  

Abstract With further climate change still expected, it is predicted to increase the frequency with plants will be water stressed, which subsequently influences phytophagous insects, particularly Lepidoptera with limited mobility of larvae. Previous studies have indicated that oviposition preference and offspring performance of Lepidoptera insects are sensitive to drought separately. However, the integration of their two properties is not always seen. Here, we evaluated changes in oviposition selection and offspring fitness of a Lepidoptera insect under three water-stressed treatments using a model agroecosystem consisting of maize Zea mays, and Asian corn borer Ostrinia furnacalis. Results found that female O. furnacalis preferred to laying their eggs on well-watered maize, and then their offspring tended to survive better, attained bigger larvae mass, and developed more pupae and adults on the preferred maize. Oviposition selection of O. furnacalis positively correlated with height and leaf traits of maize, and offspring fitness positively related with water content and phytochemical traits of hosts. Overall, these results suggest that oviposition choice performed by O. furnacalis reflects the maximization of offspring fitness, supporting preference–performance hypothesis. This finding further highlights that the importance of simultaneous evaluation of performance and performance for water driving forces should be involved, in order to accurately predict population size of O. furnacalis under altered precipitation pattern.


2021 ◽  
Vol 22 (12) ◽  
pp. 6269
Author(s):  
Anna Nowak ◽  
Paula Ossowicz-Rupniewska ◽  
Rafał Rakoczy ◽  
Maciej Konopacki ◽  
Magdalena Perużyńska ◽  
...  

Bacterial cellulose membranes (BCs) are becoming useful as a drug delivery system to the skin. However, there are very few reports on their application of plant substances to the skin. Komagataeibacter xylinus was used for the production of bacterial cellulose (BC). The BC containing 5% and 10% ethanolic extract of Epilobium angustifolium (FEE) (BC-5%FEE and BC-10%FEE, respectively) were prepared. Their mechanical, structural, and antioxidant properties, as well as phenolic acid content, were evaluated. The bioavailability of BC-FESs using mouse L929 fibroblasts as model cells was tested. Moreover, in vitro penetration through the pigskin of the selected phenolic acids contained in FEE and their accumulation in the skin after topical application of BC-FEEs was examined. The BC-FEEs were characterized by antioxidant activity. The BC-5% FEE showed relatively low toxicity to healthy mouse fibroblasts. Gallic acid (GA), chlorogenic acid (ChA), 3,4-dihydroxybenzoic acid (3,4-DHB), 4-hydroxybenzoic acid (4-HB), 3-hydroxybenzoic acid (3-HB), and caffeic acid (CA) found in FEE were also identified in the membranes. After topical application of the membranes to the pigskin penetration of some phenolic acid and other antioxidants through the skin as well as their accumulation in the skin was observed. The bacterial cellulose membrane loaded by plant extract may be an interesting solution for topical antioxidant delivery to the skin.


Fitoterapia ◽  
2021 ◽  
pp. 104948
Author(s):  
Zhong-Duo Yang ◽  
Xu-Dong Zhang ◽  
Xing Yang ◽  
Xiao-Jun Yao ◽  
Zong-Mei Shu

2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Lucia Mentesana ◽  
Martin N. Andersson ◽  
Stefania Casagrande ◽  
Wolfgang Goymann ◽  
Caroline Isaksson ◽  
...  

Abstract Background In egg-laying animals, mothers can influence the developmental environment and thus the phenotype of their offspring by secreting various substances into the egg yolk. In birds, recent studies have demonstrated that different yolk substances can interactively affect offspring phenotype, but the implications of such effects for offspring fitness and phenotype in natural populations have remained unclear. We measured natural variation in the content of 31 yolk components known to shape offspring phenotypes including steroid hormones, antioxidants and fatty acids in eggs of free-living great tits (Parus major) during two breeding seasons. We tested for relationships between yolk component groupings and offspring fitness and phenotypes. Results Variation in hatchling and fledgling numbers was primarily explained by yolk fatty acids (including saturated, mono- and polyunsaturated fatty acids) - but not by androgen hormones and carotenoids, components previously considered to be major determinants of offspring phenotype. Fatty acids were also better predictors of variation in nestling oxidative status and size than androgens and carotenoids. Conclusions Our results suggest that fatty acids are important yolk substances that contribute to shaping offspring fitness and phenotype in free-living populations. Since polyunsaturated fatty acids cannot be produced de novo by the mother, but have to be obtained from the diet, these findings highlight potential mechanisms (e.g., weather, habitat quality, foraging ability) through which environmental variation may shape maternal effects and consequences for offspring. Our study represents an important first step towards unraveling interactive effects of multiple yolk substances on offspring fitness and phenotypes in free-living populations. It provides the basis for future experiments that will establish the pathways by which yolk components, singly and/or interactively, mediate maternal effects in natural populations.


Sign in / Sign up

Export Citation Format

Share Document