scholarly journals Molecular approaches to the taxonomic position of Peruvian potato cyst nematodes and gene pool similarities in indigenous and imported populations of Globodera

Heredity ◽  
2001 ◽  
Vol 86 (3) ◽  
pp. 277-290 ◽  
Author(s):  
Eric Grenier ◽  
Michel Bossis ◽  
Didier Fouville ◽  
Lionel Renault ◽  
Didier Mugniéry
2018 ◽  
Vol 21 (2) ◽  
pp. 87 ◽  
Author(s):  
Happy Cahya Nugrahana ◽  
Siwi Indarti ◽  
Edhi Martono

Potato Cyst Nematodes (PCN), Globodera rostochiensis has noted to be a devastated pest on potato in Indonesia. It is listed as the A2 pest by Plant Quarantine of Republik Indonesia, and it was also being a highly concerned plant parasitic nematode species worlwide. Therefore, both intensive and extensive surveys should be done to monitor the spread of PCN, especially in East Java as one of the centre of potato plantations in Indonesia. The aim of this study was to study the distribution of PCN in four potato plantations in East Java, i.e. Batu, Magetan, Probolinggo, and Pasuruan which were located between 1,205 to 2,063 m above the sea level. Extraction and isolation of cysts from soil samples was done using Baunacke method, and it was followed by identification of the nematodes using morphological and molecular approaches according to Baldwin and Mundo-Ocampo. The results showed that PCN was found on all sampling sites, i.e. Batu (Sumber Brantas, Jurang Kuali, Tunggangan, Junggo, Brakseng); Magetan (Dadi, Sarangan, Singolangu); Probolinggo (Tukul, Pandansari, Ledokombo, Sumberanom, Wonokerto, Ngadas), Pasuruan (Wonokerto, Tosari, Ledoksari, Ngadiwono). Magetan and Pasuruan were noted as new infested areas in East Java. Both morphological and molecular methods showed that the species found on all sites was Globodera rostochiensis. IntisariNematoda Sista Kentang (NSK), Globodera rostochiensis telah tercatat sebagai hama yang menghancurkan tanaman kentang di Indonesia. NSK terdaftar sebagai Organisme Pengganggu Tumbuhan Karantina golongan A2 oleh Badan Karantina Pertanian Republik Indonesia, dan juga merupakan spesies nematoda parasit tanaman yang sangat merugikan di seluruh dunia. Oleh karena itu, baik survei intensif maupun ekstensif harus dilakukan untuk memantau penyebaran NSK, terutama di Jawa Timur sebagai salah satu sentra tanaman kentang di Indonesia. Tujuan dari penelitian ini adalah untuk mempelajari distribusi NSK pada empat daerah sentra penanaman kentang di Jawa Timur, yaitu Batu, Magetan, Probolinggo, dan Pasuruan yang terletak antara 1.205 sampai 2.063 m di atas permukaan laut. Ekstraksi dan isolasi sista NSK dari sampel tanah dilakukan dengan metode Baunacke, dan dilanjutkan dengan identifikasi secara morfologi dan molekuler menurut Baldwin dan Mundo-Ocampo. Hasil penelitian menunjukkan bahwa NSK ditemukan di semua lokasi pengambilan sampel, yaitu Batu (Sumber Brantas, Jurang Kuali, Tunggangan, Junggo, Brakseng); Magetan (Dadi, Sarangan, Singolangu); Probolinggo (Tukul, Pandansari, Ledokombo, Sumberanom, Wonokerto, Ngadas), Pasuruan (Wonokerto, Tosari, Ledoksari, Ngadiwono). Magetan dan Pasuruan tercatat sebagai daerah sebaran baru di Jawa Timur. Hasil identifikasi secara morfologi dan molekuler menunjukkan bahwa spesies yang ditemukan di semua lokasi adalah Globodera rostochiensis.


1993 ◽  
Vol 31 (1) ◽  
pp. 169-190 ◽  
Author(s):  
Jaap Bakker ◽  
Rolf T. Folkertsma ◽  
Jeroen N. A. M. Rouppe van der Voort ◽  
Jan M. de Boer ◽  
Fred J. Gommers

1989 ◽  
Vol 21 (8-9) ◽  
pp. 909-916
Author(s):  
A. M. Spaull ◽  
D. M. McCormack ◽  
E. B. Pike

Samples of sewage sludges, taken over a 12-month period from 9 Scottish sewage works, contained on average 0.24 cysts of Globodera spp. (potato cyst-nematodes) of which 11% were viable. The incidence was not significantly related to season or to the presence of vegetable-processing effluent. Exposure of cysts in sludge to mesophilic anaerobic digestion (35 °C, 30 min) cold anaerobic digestion (9 weeks), pasteurisation (70 °C, 30 min) and aerobic thermophilic digestion (60 °C, ld) reduced viability of eggs within the cysts by almost 100%. Sludges so treated can therefore be considered to be free from infection risk to potato crops, although the non-infective cysts may still be recovered. Treatment with lime at pH 11.5 (20 °C, 24 h), by aerobic stabilisation in an oxidation ditch (7 weeks) and by activated-sludge treatment (5d) did not reduced viability acceptably. Accelerated cold digestion did not reduce viability sufficiently after the usual 15 weeks but rendered eggs completely non-viable after 21 weeks. The results show that even sludge treated to destroy viable cysts should not be applied to land used for growing seed potatoes and subject to testing for freedom from infestation. Treatment destroying viability should increase the acceptability of sludge for ware potato growers, although the numbers of cysts applied in untreated sludge would be unlikely to increase significantly levels of cysts in soils already infested.


Plants ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 184
Author(s):  
John Wainer ◽  
Quang Dinh

The scope of this paper is limited to the taxonomy, detection, and reliable morphological and molecular identification of the potato cyst nematodes (PCN) Globodera pallida and G. rostochiensis. It describes the nomenclature, hosts, life cycle, pathotypes, and symptoms of the two species. It also provides detailed instructions for soil sampling and extraction of cysts from soil. The primary focus of the paper is the presentation of accurate and effective methods to identify the two principal PCN species.


2006 ◽  
Vol 80 (1) ◽  
pp. 21-27 ◽  
Author(s):  
Dinka Grubišić ◽  
Ljerka Oštrec ◽  
Tanja Gotlin Čuljak ◽  
Sylvia Blümel

2009 ◽  
Vol 99 (12) ◽  
pp. 1387-1393 ◽  
Author(s):  
M. Hodda ◽  
D. C. Cook

Potato cyst nematodes (PCN) (Globodera spp.) are quarantine pests with serious potential economic consequences. Recent new detections in Australia, Canada, and the United States have focussed attention on the consequences of spread and economic justifications for alternative responses. Here, a full assessment of the economic impact of PCN spread from a small initial incursion is presented. Models linking spread, population growth, and economic impact are combined to estimate costs of spread without restriction in Australia. Because the characteristics of the Australian PCN populations are currently unknown, the known ranges of parameters were used to obtain cost scenarios, an approach which makes the model predictions applicable generally. Our analysis indicates that mean annual costs associated with spread of PCN would increase rapidly initially, associated with increased testing. Costs would then increase more slowly to peak at over AUD$20 million per year ≈10 years into the future. Afterward, this annual cost would decrease slightly due to discounting factors. Mean annual costs over 20 years were $18.7 million, with a 90% confidence interval between AUD$11.9 million and AUD$27.0 million. Thus, cumulative losses to Australian agriculture over 20 years may exceed $370 million without action to prevent spread of PCN and entry to new areas.


2012 ◽  
Vol 102 (6) ◽  
pp. 620-626 ◽  
Author(s):  
N. C. Banks ◽  
M. Hodda ◽  
S. K. Singh ◽  
E. M. Matveeva

Rates and modes of dispersal of potato cyst nematodes (PCNs) were investigated. Analysis of records from eight countries suggested that PCNs spread a mean distance of 5.3 km/year radially from the site of first detection, and spread 212 km over ≈40 years before detection. Data from four countries with more detailed histories of invasion were analyzed further, using distance from first detection, distance from previous detection, distance from nearest detection, straight line distance, and road distance. Linear distance from first detection was significantly related to the time since the first detection. Estimated rate of spread was 5.7 km/year, and did not differ statistically between countries. Time between the first detection and estimated introduction date varied between 0 and 20 years, and differed among countries. Road distances from nearest and first detection were statistically significantly related to time, and gave slightly higher estimates for rate of spread of 6.0 and 7.9 km/year, respectively. These results indicate that the original site of introduction of PCNs may act as a source for subsequent spread and that this may occur at a relatively constant rate over time regardless of whether this distance is measured by road or by a straight line. The implications of this constant radial rate of dispersal for biosecurity and pest management are discussed, along with the effects of control strategies.


Sign in / Sign up

Export Citation Format

Share Document