Regulation of δ-Opioid Receptor mRNA Levels by Receptor-Mediated and Direct Activation of the Adenylyl Cyclase-Protein Kinase A Pathway

2002 ◽  
Vol 68 (2) ◽  
pp. 610-615 ◽  
Author(s):  
Beata Buzas ◽  
John Rosenberger ◽  
Brian M. Cox
2019 ◽  
Vol 93 (8) ◽  
pp. 2279-2294
Author(s):  
Romina Belén Andermatten ◽  
Nadia Ciriaci ◽  
Virginia Soledad Schuck ◽  
Nicolás Di Siervi ◽  
María Valeria Razori ◽  
...  

1998 ◽  
Vol 54 (2) ◽  
pp. 241-248 ◽  
Author(s):  
Detlef Bönisch ◽  
Artur-Aron Weber ◽  
Michael Wittpoth ◽  
Michael Osinski ◽  
Karsten Schrör

2010 ◽  
Vol 299 (4) ◽  
pp. H1146-H1152 ◽  
Author(s):  
Meera Sridharan ◽  
Shaquria P. Adderley ◽  
Elizabeth A. Bowles ◽  
Terrance M. Egan ◽  
Alan H. Stephenson ◽  
...  

Erythrocytes release ATP in response to exposure to the physiological stimulus of lowered oxygen (O2) tension as well as pharmacological activation of the prostacyclin receptor (IPR). ATP release in response to these stimuli requires activation of adenylyl cyclase, accumulation of cAMP, and activation of protein kinase A. The mechanism by which ATP, a highly charged anion, exits the erythrocyte in response to lowered O2 tension or receptor-mediated IPR activation by iloprost is unknown. It was demonstrated previously that inhibiting pannexin 1 with carbenoxolone inhibits hypotonically induced ATP release from human erythrocytes. Here we demonstrate that three structurally dissimilar compounds known to inhibit pannexin 1 prevent ATP release in response to lowered O2 tension but not to iloprost-induced ATP release. These results suggest that pannexin 1 is the conduit for ATP release from erythrocytes in response to lowered O2 tension. However, the identity of the conduit for iloprost-induced ATP release remains unknown.


2006 ◽  
Vol 20 (9) ◽  
pp. 2231-2246 ◽  
Author(s):  
Arturo E. Gonzalez-Iglesias ◽  
Yonghua Jiang ◽  
Melanija Tomić ◽  
Karla Kretschmannova ◽  
Silvana A. Andric ◽  
...  

Abstract Pituitary lactotrophs in vitro fire extracellular Ca2+-dependent action potentials spontaneously through still unidentified pacemaking channels, and the associated voltage-gated Ca2+ influx (VGCI) is sufficient to maintain basal prolactin (PRL) secretion high and steady. Numerous plasma membrane channels have been characterized in these cells, but the mechanism underlying their pacemaking activity is still not known. Here we studied the relevance of cyclic nucleotide signaling pathways in control of pacemaking, VGCI, and PRL release. In mixed anterior pituitary cells, both VGCI-inhibitable and -insensitive adenylyl cyclase (AC) subtypes contributed to the basal cAMP production, and soluble guanylyl cyclase was exclusively responsible for basal cGMP production. Inhibition of basal AC activity, but not soluble guanylyl cyclase activity, reduced PRL release. In contrast, forskolin stimulated cAMP and cGMP production as well as pacemaking, VGCI, and PRL secretion. Elevation in cAMP and cGMP levels by inhibition of phosphodiesterase activity was also accompanied with increased PRL release. The AC inhibitors attenuated forskolin-stimulated cyclic nucleotide production, VGCI, and PRL release. The cell-permeable 8-bromo-cAMP stimulated firing of action potentials and PRL release and rescued hormone secretion in cells with inhibited ACs in an extracellular Ca2+-dependent manner, whereas 8-bromo-cGMP and 8-(4-chlorophenyltio)-2′-O-methyl-cAMP were ineffective. Protein kinase A inhibitors did not stop spontaneous and forskolin-stimulated pacemaking, VGCI, and PRL release. These results indicate that cAMP facilitates pacemaking, VGCI, and PRL release in lactotrophs predominantly in a protein kinase A- and Epac cAMP receptor-independent manner.


2004 ◽  
Vol 286 (3) ◽  
pp. E434-E438 ◽  
Author(s):  
Valérie Serazin ◽  
Marie-Noelle Dieudonné ◽  
Mireille Morot ◽  
Philippe de Mazancourt ◽  
Yves Giudicelli

The adipose renin-angiotensin system (RAS) has been assigned to participate in the control of adipose tissue development and in the pathogenesis of obesity-related hypertension. In adipose cells, the biological responses to β-adrenergic stimulation are mediated by an increase in intracellular cAMP. Because cAMP is known to promote adipogenesis and because an association exists between body fat mass, hypertension, and increased sympathetic stimulation, we examined the influence of cAMP on angiotensinogen (ATG) expression and secretion in rat adipose tissue. Exposure of primary cultured differentiated preadipocytes to the cAMP analog 8-bromoadenosine 3′,5′-cyclic monophosphate (8-BrcAMP) or cAMP-stimulating agents (forskolin and IBMX) results in a significant increase in ATG mRNA levels. In adipose tissue fragments, 8-BrcAMP also increases ATG mRNA levels and protein secretion, but not in the presence of the protein kinase A inhibitor H89. The addition of isoproterenol, known to stimulate the synthesis of intracellular cAMP via β-adrenoreceptors, had the same stimulatory effect on ATG expression and secretion. These results indicate that cAMP in vitro upregulates ATG expression and secretion in rat adipose tissue via the protein kinase A-dependent pathway. Further studies are required to determine whether this regulatory pathway is activated in human obesity, where increased sympathetic tone is frequently observed, and to elucidate the importance of adipose ATG to the elevated blood pressure observed in this pathological state.


Sign in / Sign up

Export Citation Format

Share Document