scholarly journals Oxidative Stress Induces Dephosphorylation of τ in Rat Brain Primary Neuronal Cultures

2002 ◽  
Vol 68 (4) ◽  
pp. 1590-1597 ◽  
Author(s):  
Daniel R. Davis ◽  
Brian H. Anderton ◽  
Jean-Pierre Brion ◽  
C. Hugh Reynolds ◽  
Diane P. Hanger
2020 ◽  
pp. 1-10
Author(s):  
Ebtesam Alsulami ◽  
Majed Alokail ◽  
Amani Alghamedi ◽  
Abir Alamro ◽  
Samina Haq

BACKGROUND: In addition to calcium and phosphate homeostasis in peripheral tissues; vitamin D performs a neuroprotection role in the nervous system. The neuroprotective actions of vitamin D include: increasing vitamin D receptor (VDR) expression, control glutathione synthesis and nitric oxide synthase activity and induce neurotrophins such as nerve growth factor (NGF). VDR mediates cellular actions, and biological responses of the vitamin D. OBJECTIVE: To study the effect of VDR and NGF expression levels by vitamin D3 treatment in induced oxidative stress in primary cortical neuronal cultures. METHOD: Primary neuronal cultures were set up from the cortex region of neonatal rat’s brain. They were cultured for up to 72 h in the presence of 0.25μg/ml vitamin D3. These cells were exposed to 0.5 mM H2O2 for two hours before collecting cell pellet and medium for biochemical assays. Control and H2O2 treated cells were cultured in the absence of vitamin D3 treatment. Sandwich ELISA was used to study NGF expression. Western blotting and Immunofluorescence of cultured cells were used to estimate the expression of VDR. RESULTS: Vitamin D3 treatment increased more significantly (P <  0.001) NGF levels with and without induced oxidative stress. Protein expression studies confirmed the positive correlation between VDR expression and vitamin D3 treatment after 72 h in culture. Moreover, pre-treating the cells with vitamin D3 before H2O2 exposure significantly increase (P <  0.05) VDR expression in comparison with the cells exposed to H2O2 alone. CONCLUSION: The neuroprotective effect of vitamin D3 against oxidative stress could be through up-regulating VDR and NGF levels.


2005 ◽  
Vol 169 (2) ◽  
pp. 331-339 ◽  
Author(s):  
Wanli W. Smith ◽  
Darrell D. Norton ◽  
Myriam Gorospe ◽  
Haibing Jiang ◽  
Shino Nemoto ◽  
...  

Excessive accumulation of amyloid β-peptide (Aβ) plays an early and critical role in synapse and neuronal loss in Alzheimer's Disease (AD). Increased oxidative stress is one of the mechanisms whereby Aβ induces neuronal death. Given the lessened susceptibility to oxidative stress exhibited by mice lacking p66Shc, we investigated the role of p66Shc in Aβ toxicity. Treatment of cells and primary neuronal cultures with Aβ caused apoptotic death and induced p66Shc phosphorylation at Ser36. Ectopic expression of a dominant-negative SEK1 mutant or chemical JNK inhibition reduced Aβ-induced JNK activation and p66Shc phosphorylation (Ser36), suggesting that JNK phosphorylates p66Shc. Aβ induced the phosphorylation and hence inactivation of forkhead transcription factors in a p66Shc-dependent manner. Ectopic expression of p66ShcS36A or antioxidant treatment protected cells against Aβ-induced death and reduced forkhead phosphorylation, suggesting that p66Shc phosphorylation critically influences the redox regulation of forkhead proteins and underlies Aβ toxicity. These findings underscore the potential usefulness of JNK, p66Shc, and forkhead proteins as therapeutic targets for AD.


2009 ◽  
Vol 37 (6) ◽  
pp. 1385-1388 ◽  
Author(s):  
David G. Nicholls

Chronic exposure to glutamate (glutamate excitotoxicity) exacerbates neuronal damage in the aftermath of stroke and is implicated in a variety of neurodegenerative disorders. Mitochondria play a central role in the survival or death of the exposed neuron. Calcium, oxidative stress and ATP insufficiency play closely interlocked roles that may be investigated with primary neuronal cultures.


2016 ◽  
Vol 16 (11) ◽  
pp. 1491-1495 ◽  
Author(s):  
David Calderón Guzmán ◽  
Norma Osnaya Brizuela ◽  
Maribel Ortíz Herrera ◽  
Hugo Juárez Olguín ◽  
Ernestina Hernández García ◽  
...  

2011 ◽  
Vol 109 (1) ◽  
pp. 166-175 ◽  
Author(s):  
Emilia Biffi ◽  
Andrea Menegon ◽  
Francesco Piraino ◽  
Alessandra Pedrocchi ◽  
Gianfranco B. Fiore ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Meng Zhuang ◽  
Suchitra Joshi ◽  
Huayu Sun ◽  
Tamal Batabyal ◽  
Cassandra L. Fraser ◽  
...  

AbstractCritical for metabolism, oxygen plays an essential role in maintaining the structure and function of neurons. Oxygen sensing is important in common neurological disorders such as strokes, seizures, or neonatal hypoxic–ischemic injuries, which result from an imbalance between metabolic demand and oxygen supply. Phosphorescence quenching by oxygen provides a non-invasive optical method to measure oxygen levels within cells and tissues. Difluoroboron β-diketonates are a family of luminophores with high quantum yields and tunable fluorescence and phosphorescence when embedded in certain rigid matrices such as poly (lactic acid) (PLA). Boron nanoparticles (BNPs) can be fabricated from dye-PLA materials for oxygen mapping in a variety of biological milieu. These dual-emissive nanoparticles have oxygen-insensitive fluorescence, oxygen-sensitive phosphorescence, and rigid matrix all in one, enabling real-time ratiometric oxygen sensing at micron-level spatial and millisecond-level temporal resolution. In this study, BNPs are applied in mouse brain slices to investigate oxygen distributions and neuronal activity. The optical properties and physical stability of BNPs in a biologically relevant buffer were stable. Primary neuronal cultures were labeled by BNPs and the mitochondria membrane probe MitoTracker Red FM. BNPs were taken up by neuronal cell bodies, at dendrites, and at synapses, and the localization of BNPs was consistent with that of MitoTracker Red FM. The brain slices were stained with the BNPs, and the BNPs did not significantly affect the electrophysiological properties of neurons. Oxygen maps were generated in living brain slices where oxygen is found to be mostly consumed by mitochondria near synapses. Finally, the BNPs exhibited excellent response when the conditions varied from normoxic to hypoxic and when the neuronal activity was increased by increasing K+ concentration. This work demonstrates the capability of BNPs as a non-invasive tool in oxygen sensing and could provide fundamental insight into neuronal mechanisms and excitability research.


Sign in / Sign up

Export Citation Format

Share Document