scholarly journals A caspase-3-dependent pathway is predominantly activated by the excitotoxin pregnenolone sulfate and requires early and late cytochrome c release and cell-specific caspase-2 activation in the retinal cell death

2002 ◽  
Vol 83 (6) ◽  
pp. 1358-1371 ◽  
Author(s):  
C. Cascio ◽  
R. Guarneri ◽  
D. Russo ◽  
G. De Leo ◽  
M. Guarneri ◽  
...  
2019 ◽  
Vol 47 (04) ◽  
pp. 895-912 ◽  
Author(s):  
Ming-Chung Lin ◽  
Yuan-Wen Lee ◽  
Yuan-Yun Tseng ◽  
Yung-Wei Lin ◽  
Jui-Tai Chen ◽  
...  

In children, neuroblastomas are the most common and deadly solid tumor. Our previous studies showed that honokiol can cross the blood–brain barrier and kill neuroblastoma cells. In this study, we further evaluated if exposure to honokiol for short periods could induce autophagy and subsequent apoptosis of neuroblastoma cells and possible mechanisms. Exposure of neuroblastoma neuro-2a cells to honokiol for 24[Formula: see text]h induced morphological shrinkage and cell death. As to the mechanisms, honokiol consecutively induced cytochrome c release from mitochondria, caspase-3 activation, DNA fragmentation and cell apoptosis. Separately, honokiol time-dependently augmented the proportion of autophagic cells and the ratio of light chain 3 (LC3)-II/LC3-I. Pretreatment of neuro-2a cells with 3-methyladenine, an inhibitor of autophagy, attenuated honokiol-induced cell autophagy, caspase-3 activation, DNA damage and cell apoptosis. In contrast, stimulation of autophagy by rapamycin, an inducer of autophagy, significantly enhanced honokiol-induced cell apoptosis. Furthermore, honokiol-induced autophagic apoptosis was confirmed in neuroblastoma NB41A3 cells. Knocking down translation of p53 using RNA interference attenuated honokiol-induced autophagy and apoptosis in neuro-2a and NB41A3 cells. Taken together, this study showed that at early periods, honokiol can induce autophagic apoptosis of neuroblastoma cells through activating a p53-dependent mechanism. Consequently, honokiol has the potential to be a therapeutic option for neuroblastomas.


2001 ◽  
Vol 21 (5) ◽  
pp. 568-576 ◽  
Author(s):  
Ping-An Li ◽  
Ingrid Rasquinha ◽  
Qing Ping He ◽  
Bo K. Siesjö ◽  
Katalin Csiszár ◽  
...  

Previous histopathologic results have suggested that one mechanism whereby hyperglycemia (HG) leads to exaggerated ischemic damage involves fragmentation of DNA. DNA fragmentation in normoglycemia (NG) and HG rats subjected to 30 minutes of forebrain ischemia was studied by terminal deoxynucleotidyl transferase mediated DNA nick-labeling (TUNEL) staining, by pulse-field gel electrophoresis (PFGE), and by ligation-mediated polymerase chain reaction (LM-PCR). High molecular weight DNA fragments were detected by PFGE, whereas low molecular weight DNA fragments were detected using LM-PCR techniques. The LM-PCR procedure was performed on DNA from test samples with blunt (without Klenow polymerase) and 3′-recessed ends (with Klenow polymerase). In addition, cytochrome c release and caspase-3 activation were studied by immunocytochemistry. Results show that HG causes cytochrome c release, activates caspase-3, and exacerbates DNA fragments induced by ischemia. Thus, in HG rats, but not in control or NGs, TUNEL-stained cells were found in the cingulate cortex, neocortex, thalamus, and dorsolateral crest of the striatum, where neuronal death was observed by conventional histopathology, and where both cytosolic cytochrome c and active caspase-3 were detected by confocal microscopy. In the neocortex, both blunt-ended and stagger-ended fragments were detected in HG, but not in NG rats. Electron microscopy (EM) analysis was performed in the cingulate cortex, where numerous TUNEL-positive neurons were observed. Although DNA fragmentation was detected by TUNEL staining and electrophoresis techniques, EM analysis failed to indicate apoptotic cell death. It is concluded that HG triggers a cell death pathway and exacerbates DNA fragmentation induced by ischemia.


2021 ◽  
Vol 12 ◽  
Author(s):  
Liyun Sun ◽  
Zixuan Li ◽  
Huoli Shang ◽  
Xiujuan Xin

The enhanced inhibitory effect of paclitaxel (PTX) combined with hypericin (HY) on B16-F10 cells may be realized through the ROS-related cytochrome c release pathway. The apoptotic characteristics of the B16-F10 cells, such as DNA fragmentation, chromatin condensation, and apoptotic body formation, were all enhanced in the combined treatment group. Further investigation showed that the combination of paclitaxel and HY could increase the level of mitochondrial damage and the concentration of cytochrome c, causing the expression of caspase-3 and the cleavage of PARP.1. Compared with paclitaxel or HY alone, the level of reactive oxygen species (ROS) increased significantly, while glutathione reductase (GR) activity and intracellular glutathione (GSH) levels decreased significantly in the combination group.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 1589-1589
Author(s):  
Dirk Winkler ◽  
Thorsten Zenz ◽  
Daniel Mertens ◽  
Annett Habermann ◽  
Hartmut Döhner ◽  
...  

Abstract The PI3K/AKT pathway acts as a critical regulator of cell survival by stimulating cell proliferation and inhibiting apoptosis and has been implicated in the pathogenesis of lymphoproliferative disorders. Therefore, inhibition of AKT seems to be a highly attractive new approach for the treatment of lymphoma. We treated 9 cell lines with AKT-nhibitor (1, 10, 20 μM) over 24h and 48h respectively: EHEB (B-CLL), GRANTA-519 (MCL), JURKAT (T-ALL) BL-60, NAMALWA and BJAB (all Burkitt’s lymphoma), L363, OPM-2 and RPMI-8226 (all multiple myeloma). To determine the rates and type of AKT-inhibitor induced cell death, FACS analyses for CD19, 7AAD, active caspase-3, cytochrome c were performed. The phosphorylation status of AKT and its downstream proteins GSK3β, p70S6k and S6 was studied by Western blotting after 5–120 minutes. In addition, 11 primary CLL samples with either del 13q (n=3), del 11q (n=2), del 17p (n=3) or a normal karyotype (n=3) were treated with AKT inhibitor (10 μM; 2.5μM; 0.625 μM; 0.156 μM). CLL samples were cultured in both standard medium as well as in HS5-(human stromal cells) conditioned medium to reduce spontaneous apoptosis of CLL in-vitro. 6 out of 11 patients had unmutated VH genes. 8 Patients were untreated, 3 were previously treated. Fludarabine (0.1 μM) was added to AKT-inhibitor in 11 cases to test for synergistic effects. CLL cells were harvested after 48 hours and 5 days to measure cell viability using Celltiter-GLO-Assay. Treatment of cell lines lead to significant rates of AKT-inhibitor induced cell death (table 1), to hyperphosphorylation of AKT and to inhibition of phosphorylation of GSK3β (after 5 min) and S6 (after 20 min) in all cell lines and of p70S6k (after 120 min) in GRANTA, JURKAT, NAMALWA and BJAB. Cell death did not depend on functional p53 gene. Treatment of primary CLL samples with AKT-inhibitor alone was followed by a decrease of cell viability in a time and concentration dependent manner regardless of the medium used (table 2). Only with the lowest concentration and when cultured in HS5-conditioned medium, no further reduction of viable cells was seen between 48h and 5d. Treatment with AKT-inhibitor as a single agent seemed to be at least as effective as treatment with fludarabine. Response was independent of the genetic subgroup, VH mutation status or prior treatment. High risk cases with del 17p responded worse to fludarabine alone when compared to cases without del 17p (i.e. 75% of viable cells after 5d at 10000 μM in cases with del 17p vs. 25% in cases without del 17p). The same fludarabine resistant cases showed good responses to treatment with AKT-inhibitor (9% of viable cells after 5d at 10000 μM in cases with del 17p). A synergistic effect was not achieved by combining AKT-inhibitor and fludarabine. Culture of CLL cells in HS5-conditioned medium resulted in lower rates of spontaneous apoptosis, but also in lower rates of AKT-inhibitor induced cell death. In conclusion, in-vitro treatment with AKT-inhibitor resulted in significant rates of cell death in cell lines and primary CLL cells, even in patients with del 17p or resistance to fludarabine. In cell lines, treatment with AKT-inhibitor was followed by typical features of apoptosis such as activation of caspase-3 and cytochrome c release. In CLL samples, prior treatment did not affect in-vitro response rates. These data underline the involvement of the PI3K/Akt pathway in the pathogenesis of lymphoma and point to an efficacy of the AKT-inhibitor in the treatment of lymphoma, multiple myeloma and CLL in-vivo. Concerning CLL, the AKT-inhibitor seems to be an attractive new treatment option even for cases with high risk cytogenetics. Using HS5-conditioned medium seems to be a well functioning method to reduce spontaneous apoptosis of CLL cells in-vitro. Table 1: rates of cell death, caspase-3 activation and cytochrome c release after treatment of cell lines with AKT inhibitor (1μM, 48h) 7AAD-positive cells active caspase-3 cytochrome c release EHEB 15% − + GRANTA-519 15% + + JURKAT 17% + + BL60 24% + + NAMALWA 25% − (+) BJAB 30% + (+) L363 15% + − OPM-2 41% + + RPMI-8226 32% + (+) Table 2: mean percentage of viable cells after treatment with AKT-Inhibitor (A), fludarabine (F; 0,1μM) and their combination (A + F) measured by Celltiter-GLO-Assay 10000 nM 2500 nM 625 nM 156,25 nM 48h 5d 48h 5d 48h 5d 48h 5d A F A + F A F A + F A A F A+ F A F A+ F A HS5 + (n=8) 94 84 (n=5) 75 (n=5) 45 22 (n=5) 25 (n=5) 88 52 91 84 80 69 22 18 76 85 HS5 − (n=11) 60 79 59 8 39 21 77 27 80 79 76 28 39 34 82 (n=10) 21


2004 ◽  
Vol 286 (6) ◽  
pp. H2280-H2286 ◽  
Author(s):  
Yimin Qin ◽  
Terry L. Vanden Hoek ◽  
Kim Wojcik ◽  
Travis Anderson ◽  
Chang-Qing Li ◽  
...  

We recently demonstrated that reperfusion rapidly induces the mitochondrial pathway of apoptosis in chick cardiomyocytes after 1 h of simulated ischemia. Here we tested whether ischemia-reperfusion (I/R)-induced apoptosis could be initiated by caspase-dependent cytochrome c release in this model of cardiomyocyte injury. Fluorometric assays of caspase activity showed little, if any, activation of caspases above baseline levels induced by 1 h of ischemia alone. However, these assays revealed rapid activation of caspase-2, yielding a 2.95 ± 0.52-fold increase (over ischemia only) within the 1st h of reperfusion, whereas activities of caspases-3, -8, and -9 increased only slightly from their baseline levels. The rapid and prominent activation of caspase-2 suggested that it could be an important initiator caspase in this model, and using specific caspase inhibitors given only at the point of reperfusion, we tested this hypothesis. The caspase-2 inhibitor benzyloxycarbonyl-Val-Asp(Ome)-Val-Ala-Asp(Ome)-CH2F was the only caspase inhibitor that significantly inhibited cytochrome c release from mitochondria. This inhibitor also completely blocked activation of caspases-3, -8, and -9. The caspase-3/7 inhibitor transiently and only partially blocked caspase-2 activity and was less effective in blocking the activities of caspases-8 and -9. The caspase-8 inhibitor failed to significantly block caspase-2 or -3, and the caspase-9 inhibitor blocked only caspase-9. Furthermore, the caspase-2 inhibitor protected against I/R-induced cell death, but the caspase-8 inhibitor failed to do so. These data suggest that active caspase-2 initiates cytochrome c release after reperfusion and that it is critical for the I/R-induced apoptosis in this model.


2008 ◽  
Vol 294 (3) ◽  
pp. G728-G737 ◽  
Author(s):  
Kaitlin M. Naugler ◽  
Kathy A. Baer ◽  
Mark J. Ropeleski

Interleukin-11 (IL-11) displays epithelial cytoprotective effects during intestinal injury. Antiapoptotic effects of IL-11 have been described, yet mechanisms remain unclear. Fas/CD95 death receptor signaling is upregulated in ulcerative colitis, leading to mucosal breakdown. We hypothesized that IL-11 inhibits Fas ligand (FasL)-mediated apoptosis in intestinal epithelia. Cell death was monitored in IEC-18 cells by microscopy, caspase and poly(ADP-ribose) polymerase cleavage, mitochondrial release of cytochrome c, and abundance of cytoplasmic oligonucleosomal DNA. RT-PCR was used to monitor Fas, cIAP1, cIAP2, XIAP, cFLIP, survivin, and Bcl-2 family members. Fas membrane expression was detected by immunoblot. Inhibitors of JAK2, phosphatidylinositol 3-kinase (PI3-kinase), Akt 1, MEK1 and MEK2, and p38 MAPK were used to delineate IL-11's antiapoptotic mechanisms. IL-11 did not alter Fas expression. Pretreatment with IL-11 for 24 h before FasL reduced cytoplasmic oligonucleosomal DNA by 63.2%. IL-11 also attenuated caspase-3, caspase-9, and poly(ADP-ribose) polymerase cleavage without affecting expression of activated caspase-8 p20 or cytochrome c release. IL-11 did not affect mRNA expression of the candidate antiapoptotic genes. The MEK1 and MEK2 inhibitors U-0126 and PD-98059 significantly attenuated the protection of IL-11 against caspase-3 and caspase-9 cleavage and cytoplasmic oligonucleosomal DNA accumulation. Although Akt inhibition reversed IL-11-mediated effects on caspase cleavage, it did not reverse the protective effects of IL-11 by DNA ELISA. We conclude that IL-11-dependent MEK1 and MEK2 signaling inhibits FasL-induced apoptosis. The lack of reversal of the IL-11 effect on DNA cleavage by Akt inhibition, despite antagonism of caspase cleavage, suggests that IL-11 inhibits caspase-independent cell death signaling by FasL in a MEK-dependent manner.


2005 ◽  
Vol 289 (6) ◽  
pp. L1019-L1028 ◽  
Author(s):  
Erik I. Finkelstein ◽  
Jurjen Ruben ◽  
C. Wendy Koot ◽  
Milena Hristova ◽  
Albert van der Vliet

Reactive α,β-unsaturated aldehydes are major components of common environmental pollutants and are products of lipid oxidation. Although these aldehydes have been demonstrated to induce apoptotic cell death in various cell types, we recently observed that the α,β-unsaturated aldehyde acrolein (ACR) can inhibit constitutive apoptosis of polymorphonuclear neutrophils and thus potentially contribute to chronic inflammation. The present study was designed to investigate the biochemical mechanisms by which two representative α,β-unsaturated aldehydes, ACR and 4-hydroxynonenal (HNE), regulate neutrophil apoptosis. Whereas low concentrations of either aldehyde (<10 μM) mildly promoted apoptosis in neutrophils (reflected by increased phosphatidylserine exposure, caspase-3 activation, and mitochondrial cytochrome c release), higher concentrations prevented critical features of apoptosis (caspase-3 activation, phosphatidylserine exposure) and caused delayed neutrophil cell death with characteristics of necrosis/oncosis. Inhibition of caspase-3 activation by either aldehyde occurred despite increases in mitochondrial cytochrome c release and occurred in close association with depletion of cellular GSH and with cysteine modifications within caspase-3. However, procaspase-3 processing was also prevented, because of inhibited activation of caspases-9 and -8 under similar conditions, suggesting that ACR (and to a lesser extent HNE) can inhibit both intrinsic (mitochondria dependent) and extrinsic mechanisms of neutrophil apoptosis at initial stages. Collectively, our results indicate that α,β-unsaturated aldehydes can inhibit constitutive neutrophil apoptosis by common mechanisms, involving changes in cellular GSH status resulting in reduced activation of initiator caspases as well as inactivation of caspase-3 by modification of its critical cysteine residue.


1999 ◽  
Vol 189 (1) ◽  
pp. 131-144 ◽  
Author(s):  
Glen MacDonald ◽  
Lianfa Shi ◽  
Christine Vande Velde ◽  
Judy Lieberman ◽  
Arnold H. Greenberg

Granzyme B (GraB) is required for the efficient activation of apoptosis by cytotoxic T lymphocytes and natural killer cells. We find that GraB and perforin induce severe mitochondrial perturbation as evidenced by the release of cytochrome c into the cytosol and suppression of transmembrane potential (Δψ). The earliest mitochondrial event was the release of cytochrome c, which occurred at the same time as caspase 3 processing and consistently before the activation of apoptosis. Granzyme K/perforin or perforin treatment, both of which kill target cells efficiently but are poor activators of apoptosis in short-term assays, did not induce rapid cytochrome c release. However, they suppressed Δψ and increased reactive oxygen species generation, indicating that mitochondrial dysfunction is also associated with this nonapoptotic cell death. Pretreatment with peptide caspase inhibitors zVAD-FMK or YVAD-CHO prevented GraB apoptosis and cytochrome c release, whereas DEVD-CHO blocked apoptosis but did not prevent cytochrome c release, indicating that caspases act both up- and downstream of mitochondria. Of additional interest, Δψ suppression mediated by GraK or GraB and perforin was not affected by zVAD-FMK and thus was caspase independent. Overexpression of Bcl-2 and Bcl-XL suppressed caspase activation, mitochondrial cytochrome c release, Δψ suppression, and apoptosis and cell death induced by GraB, GraK, or perforin. In an in vitro cell free system, GraB activates nuclear apoptosis in S-100 cytosol at high doses, however the addition of mitochondria amplified GraB activity over 15-fold. GraB- induced caspase 3 processing to p17 in S-100 cytosol was increased only threefold in the presence of mitochondria, suggesting that another caspase(s) participates in the mitochondrial amplification of GraB apoptosis. We conclude that GraB-induced apoptosis is highly amplified by mitochondria in a caspase-dependent manner but that GraB can also initiate caspase 3 processing and apoptosis in the absence of mitochondria.


Sign in / Sign up

Export Citation Format

Share Document