DNA-Binding Activity of Wild-Type p53 Protein is Mediated by the Central Part of the Molecule and Controlled by Its C Terminus

1998 ◽  
Vol 22 (1) ◽  
pp. 1-13 ◽  
Author(s):  
Roland Wolkowicz ◽  
Amnon Peled ◽  
Barry Elkind ◽  
Varda Rotter
1997 ◽  
Vol 17 (10) ◽  
pp. 5699-5706 ◽  
Author(s):  
G W Verhaegh ◽  
M J Richard ◽  
P Hainaut

Mutations in the p53 tumor suppressor gene frequently fall within the specific DNA-binding domain and prevent the molecule from transactivating normal targets. DNA-binding activity is regulated in vitro by metal ions and by redox conditions, but whether these factors also regulate p53 in vivo is unclear. To address this question, we have analyzed the effect of pyrrolidine dithiocarbamate (PDTC) on p53 DNA-binding activity in cell lines expressing wild-type p53. PDTC is commonly regarded as an antioxidant, but it can also bind and transport external copper ions into cells and thus exert either pro- or antioxidant effects in different situations. We report that PDTC, but not N-acetyl-L-cysteine, down-regulated the specific DNA-binding activity of p53. Loss of DNA binding correlated with disruption of the immunologically "wild-type" p53 conformation. Using different chelators to interfere with copper transport by PDTC, we found that bathocuproinedisulfonic acid (BCS), a non-cell-permeable chelator of Cu1+, prevented both copper import and p53 down-regulation. In contrast, 1,10-orthophenanthroline, a cell-permeable chelator of Cu2+, promoted the redox activity of copper and up-regulated p53 DNA-binding activity through a DNA damage-dependent pathway. We have previously reported that p53 protein binds copper in vitro in the form of Cu1+ (P. Hainaut, N. Rolley, M. Davies, and J. Milner, Oncogene 10:27-32, 1995). The data reported here indicate that intracellular levels and redox activity of copper are critical for p53 protein conformation and DNA-binding activity and suggest that copper ions may participate in the physiological control of p53 function.


2004 ◽  
Vol 279 (44) ◽  
pp. 45887-45896 ◽  
Author(s):  
Mark J. Demma ◽  
Serena Wong ◽  
Eugene Maxwell ◽  
Bimalendu Dasmahapatra

The p53 protein plays a major role in the maintenance of genome stability in mammalian cells. Mutations of p53 occur in over 50% of all cancers and are indicative of highly aggressive cancers that are hard to treat. Recently, there has been a high degree of interest in therapeutic approaches to restore growth suppression functions to mutant p53. Several compounds have been reported to restore wild type function to mutant p53. One such compound, CP-31398, has been shown effectivein vivo, but questions have arisen to whether it actually affects p53. Here we show that mutant p53, isolated from cells treated with CP-31398, is capable of binding to p53 response elementsin vitro. We also show the compound restores DNA-binding activity to mutant p53 in cells as determined by a chromatin immunoprecipitation assay. In addition, using purified p53 core domain from two different hotspot mutants (R273H and R249S), we show that CP-31398 can restore DNA-binding activity in a dose-dependent manner. Using a quantitative DNA binding assay, we also show that CP-31398 increases significantly the amount of mutant p53 that binds to cognate DNA (Bmax) and its affinity (Kd) for DNA. The compound, however, does not affect the affinity (Kdvalue) of wild type p53 for DNA and only increasesBmaxslightly. In a similar assay PRIMA1 does not have any effect on p53 core DNA-binding activity. We also show that CP-31398 had no effect on the DNA-binding activity of p53 homologs p63 and p73.


1994 ◽  
Vol 14 (4) ◽  
pp. 2651-2663
Author(s):  
T Kanda ◽  
K Segawa ◽  
N Ohuchi ◽  
S Mori ◽  
Y Ito

The tumor suppressor p53 possesses characteristics of a transcription factor; it binds to specific DNA sequences and activates transcription from various promoters. Here we found that murine wild-type p53 stimulated not only transcription but also polyomavirus (Py) DNA replication in a sequence-dependent manner. Oncogenic mutant p53, lacking the DNA-binding activity, showed no stimulation of Py DNA replication. Deletion of the N-terminal acidic transactivation domain of wild-type p53, which completely eliminated the ability to stimulate transcription, only impaired the function to stimulate Py DNA replication. The replication-stimulating activity of wild-type p53 was impaired by the deletion of the C-terminal oligomerization domain as well, without affecting the ability to stimulate transcription. The region responsible for the sequence-specific DNA-binding activity mapped to the central portion of the p53 molecule has a minimal activity. The results indicate that both the N-terminal and the C-terminal regions significantly contribute to the p53-mediated stimulation of Py DNA replication.


2010 ◽  
Vol 427 (2) ◽  
pp. 225-236 ◽  
Author(s):  
Assia Merabet ◽  
Hellen Houlleberghs ◽  
Kate Maclagan ◽  
Ester Akanho ◽  
Tam T. T. Bui ◽  
...  

To assess the potential of mutations from the L1 loop of the tumour suppressor p53 as second-site suppressors, the effect of H115N and S116M on the p53 ‘hot spot’ mutations has been investigated using the double-mutant approach. The effects of these two mutants on the p53 hot spots in terms of thermal stability and DNA binding were evaluated. The results show that: (i) the p53 mutants H115N and S116M are thermally more stable than wild-type p53; (ii) H115N but not S116M is capable of rescuing the DNA binding of one of the most frequent p53 mutants in cancer, R248Q, as shown by binding of R248Q/H115N to gadd45 (the promoter of a gene involved in cell-cycle arrest); (iii) the double mutant R248Q/H115N is more stable than wild-type p53; (iv) the effect of H115N as a second-site suppressor to restore DNA-binding activity is specific to R248Q, but not to R248W; (v) molecular-dynamics simulations indicate that R248Q/H115N has a conformation similar to wild-type p53, which is distinct from that of R248Q. These findings could be exploited in designing strategies for cancer therapy to identify molecules that could mimic the effect of H115N in restoring function to oncogenic p53 mutants.


1994 ◽  
Vol 14 (4) ◽  
pp. 2651-2663 ◽  
Author(s):  
T Kanda ◽  
K Segawa ◽  
N Ohuchi ◽  
S Mori ◽  
Y Ito

The tumor suppressor p53 possesses characteristics of a transcription factor; it binds to specific DNA sequences and activates transcription from various promoters. Here we found that murine wild-type p53 stimulated not only transcription but also polyomavirus (Py) DNA replication in a sequence-dependent manner. Oncogenic mutant p53, lacking the DNA-binding activity, showed no stimulation of Py DNA replication. Deletion of the N-terminal acidic transactivation domain of wild-type p53, which completely eliminated the ability to stimulate transcription, only impaired the function to stimulate Py DNA replication. The replication-stimulating activity of wild-type p53 was impaired by the deletion of the C-terminal oligomerization domain as well, without affecting the ability to stimulate transcription. The region responsible for the sequence-specific DNA-binding activity mapped to the central portion of the p53 molecule has a minimal activity. The results indicate that both the N-terminal and the C-terminal regions significantly contribute to the p53-mediated stimulation of Py DNA replication.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Shu-Hao Liou ◽  
Sameer K. Singh ◽  
Robert H. Singer ◽  
Robert A. Coleman ◽  
Wei-Li Liu

AbstractThe tumor suppressor p53 protein activates expression of a vast gene network in response to stress stimuli for cellular integrity. The molecular mechanism underlying how p53 targets RNA polymerase II (Pol II) to regulate transcription remains unclear. To elucidate the p53/Pol II interaction, we have determined a 4.6 Å resolution structure of the human p53/Pol II assembly via single particle cryo-electron microscopy. Our structure reveals that p53’s DNA binding domain targets the upstream DNA binding site within Pol II. This association introduces conformational changes of the Pol II clamp into a further-closed state. A cavity was identified between p53 and Pol II that could possibly host DNA. The transactivation domain of p53 binds the surface of Pol II’s jaw that contacts downstream DNA. These findings suggest that p53’s functional domains directly regulate DNA binding activity of Pol II to mediate transcription, thereby providing insights into p53-regulated gene expression.


1997 ◽  
Vol 17 (8) ◽  
pp. 4536-4543 ◽  
Author(s):  
V Bailly ◽  
S Prakash ◽  
L Prakash

The RAD6 gene of Saccharomyces cerevisiae encodes a ubiquitin-conjugating enzyme required for postreplicational repair of UV-damaged DNA and for damage-induced mutagenesis. In addition, Rad6 functions in the N end rule pathway of protein degradation. Rad6 mediates its DNA repair role via its association with Rad18, whose DNA binding activity may target the Rad6-Rad18 complex to damaged sites in DNA. In its role in N end-dependent protein degradation, Rad6 interacts with the UBR1-encoded ubiquitin protein ligase (E3) enzyme. Previous studies have indicated the involvement of N-terminal and C-terminal regions of Rad6 in interactions with Ubr1. Here, we identify the regions of Rad6 and Rad18 that are involved in the dimerization of these two proteins. We show that a region of 40 amino acids towards the C terminus of Rad18 (residues 371 to 410) is sufficient for interaction with Rad6. This region of Rad18 contains a number of nonpolar residues that have been conserved in helix-loop-helix motifs of other proteins. Our studies indicate the requirement for residues 141 to 149 at the C terminus, and suggest the involvement of residues 10 to 22 at the N terminus of Rad6, in the interaction with Rad18. Each of these regions of Rad6 is indicated to form an amphipathic helix.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 4850-4850
Author(s):  
Eroica Soans ◽  
John K Choi

Abstract Introduction TCF3 encodes for E2A protein, which belongs to the helix loop helix transcription factor family. E2A activates transcription of downstream genes by binding to E-box motifs as a homo or hetero dimer. E2A plays an important role in B lymphocyte development. Therefore deletion or mutations in TCF3 or even lowered activity of E2A are causes of B cell leukemia and lymphomas. Recently, three mutations V557E, D561E and N551K in E2A were isolated in Burkitt’s lymphoma (Schmitz, Young et al. 2012). The first two mutations are present in the homo dimerization region of E2A while N551K is present in the DNA binding region. Though the paper enumerated role of TCF3 in Burkitt’s lymphoma but the significance of these TCF3 mutations or mechanism needed further characterization. We hypothesized that these TCF3 mutations have an alternate mechanism as compared to wild type TCF3 and therefore may affect B cell development. Methods We characterized three TCF3 mutants by cloning them into in MIGR1 backbone using TOPO cloning. E2A activity was measured using an E2A-specific luciferase reporter assay in 293T cells. DNA binding activity was measured using a DNA protein binding colorimetric assay. Results V557E and D561E mutants have lower activity as compared to wild type E2A as studied using E2A-specific luciferase reporter assay; while N551K showed no activity in the same assay as compared to wild type E2A activity. Similarly V557E and D561 form weaker bonds with the E box motifs while N551K showed no DNA binding activity as studied using colorimetric DNA-protein binding assay. The plasmid expressions were verified using western blot analysis. Conclusion Our findings suggest mutations V557E and D561E may follow a similar pathway as wild-type E2A but have lower activity. The N551K mutation has an alternate pathway to wild type TCF3 that may impact B cell proliferation, survival and development. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document